科目: 来源: 题型:
【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:):根据样本估计本市生活垃圾投放情况,下列说法错误的是( )
厨余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.厨余垃圾投放正确的概率为
B.居民生活垃圾投放错误的概率为
C.该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱
D.厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.
(1)求曲线的轨迹方程;
(2)过点分别作射线、交曲线于不同的两点、,且以为直径的圆经过点.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M-BO-C的大小为30°,如存在,求的值,如不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在路边安装路灯:路宽米,灯杆长米,且与灯柱成120°角,路灯采用锥形灯罩,灯罩轴线与灯杆垂直且正好通过道路路面的中线.
(1)求灯柱高的长度(精确到0.01米);
(2)若该路灯投射出的光成一个圆锥体,该圆锥体母线与轴线的夹角是30°,写出路灯在路面上投射出的截面图形的边界是什么曲线?写出其相应的几何量(精确到0.01米).
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(α为参数),将C上每一点的横坐标保持不变,纵坐标变为原来的3倍,得曲线C1.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程
(2)设M,N为C1上两点,若OM⊥ON,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数满足:对于任意正数,都有,且,则称函数为“函数”。
(1)试判断函数是否是“函数”并说明理由;
(2)若函数为“函数”,求实数的取值范围;
(3)若函数为“函数”,且.
求证();
()对任意,都有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com