科目: 来源: 题型:
【题目】如图,在单位正方体
中,点P在线段
上运动,给出以下四个命题:
![]()
异面直线
与
间的距离为定值;
三棱锥
的体积为定值;
异面直线
与直线
所成的角为定值;
二面角
的大小为定值.
其中真命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】出版商为了解某科普书一个季度的销售量
(单位:千本)和利润
(单位:元/本)之间的关系,对近年来几次调价之后的季销售量进行统计分析,得到如下的10组数据.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 |
| 18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
![]()
根据上述数据画出如图所示的散点图:
(1)根据图中所示的散点图判断
和
哪个更适宜作为销售量
关于利润
的回归方程类型?(给出判断即可,不需要说明理由)
(2)根据(1)中的判断结果及参考数据,求出
关于
的回归方程;
(3)根据回归方程预测当每本书的利润为10.5元时的季销售量.
参考公式及参考数据:
①对于一组数据
,其回归直线
的斜率和截距的公式分别为
.
②参考数据:
|
|
|
|
|
|
|
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
|
|
表中
.另:
.计算时,所有的小数都精确到0.01.
查看答案和解析>>
科目: 来源: 题型:
【题目】 下列结论错误的是
A. 命题:“若
,则
”的逆否命题是“若
,则
”
B. “
”是“
”的充分不必要条件
C. 命题:“
,
”的否定是“
,
”
D. 若“
”为假命题,则
均为假命题
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在四棱锥
中,侧棱
平面
,底面
是直角梯形,
,
,
,
,
为侧棱
中点.
![]()
(1)设
为棱
上的动点,试确定点
的位置,使得平面
平面
,并写出证明过程;
(2)求点
到平面
的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,且椭圆
短轴的一个顶点到左焦点
的距离等于
.
![]()
(1)求椭圆
的方程;
(2)设经过点
的直线
交椭圆
于
两点,弦
的中垂线
交
轴于点
.
①求实数
的取值范围;
②若
,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
的左、右顶点分别为
,焦点在
轴上的椭圆以
为顶点,且离心率为
.
(1)求椭圆的标准方程;
(2)设过点
的直线
交双曲线右支于另一点
,交椭圆于另一点
,记
,
的面积分别为
,若
,求直线
的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
为抛物线
的焦点,点
、
在抛物线上,且
、
、
三点共线.若圆
的直径为
.
(1)求抛物线
的标准方程;
(2)过点
的直线
与抛物线交于点
,
,分别过
、
两点作抛物线
的切线
,
,证明直线
,
的交点在定直线上,并求出该直线.
查看答案和解析>>
科目: 来源: 题型:
【题目】出版商为了解某科普书一个季度的销售量
(单位:千本)和利润
(单位:元/本)之间的关系,对近年来几次调价之后的季销售量进行统计分析,得到如下的10组数据.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 |
| 18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
![]()
根据上述数据画出如图所示的散点图:
(1)根据图中所示的散点图判断
和
哪个更适宜作为销售量
关于利润
的回归方程类型?(给出判断即可,不需要说明理由)
(2)根据(1)中的判断结果及参考数据,求出
关于
的回归方程;
(3)根据回归方程设该科普书一个季度的利润总额为
(单位:千元),当季销售量
为何值时,该书一个季度的利润总额预报值最大?(季利润总额=季销售量×每本书的利润)
参考公式及参考数据:
①对于一组数据
,其回归直线
的斜率和截距的公式分别为
.
②参考数据:
|
|
|
|
|
|
|
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
|
|
表中
.另:
.计算时,所有的小数都精确到0.01.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在四棱锥
中,侧棱
平面
,底面
是直角梯形,
,
,
,
,
为侧棱
中点.
![]()
(1)设
为棱
上的动点,试确定点
的位置,使得平面
平面
,并写出证明过程;
(2)求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com