科目: 来源: 题型:
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.
![]()
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.
(i)请将表格补充完整;
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
(ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知圆
的方程为
,圆
的方程为
,若动圆
与圆
内切,与圆
外切.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)过直线
上的点
作圆
的两条切线,设切点分别是
,
,若直线
与轨迹
交于
,
两点,求
的最小值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年冬奥会申办成功,让中国冰雪项目迎来了新的发展机会,“十四冬”作为北京冬奥会前重要的练兵场,对冰雪运动产生了不可忽视的带动作用.某校对冰雪体育社团中甲、乙两人的滑轮、雪合战、雪地足球、冰尜(ga)、爬犁速降及俯卧式爬犁6个冬季体育运动项目进行了指标测试(指标值满分为5分,分高者为优),根据测试情况绘制了如图所示的指标雷达图.则下面叙述正确的是( )
![]()
A.甲的轮滑指标高于他的雪地足球指标
B.乙的雪地足球指标低于甲的冰尜指标
C.甲的爬犁速降指标高于乙的爬犁速降指标
D.乙的俯卧式爬犁指标低于甲的雪合战指标
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:万元)对年销售量
(单位:吨)和年利润
(单位:万元)的影响.对近六年的年宣传费
和年销售量
(
)的数据作了初步统计,得到如下数据:
年份 |
|
|
|
|
|
|
年宣传费 |
|
|
|
|
|
|
年销售量 |
|
|
|
|
|
|
经电脑模拟,发现年宣传费
(万元)与年销售量
(吨)之间近似满足关系式
(
).对上述数据作了初步处理,得到相关的值如表:
|
|
|
|
|
|
|
|
(1)根据所给数据,求
关于
的回归方程;
(2)已知这种产品的年利润
与
,
的关系为
若想在
年达到年利润最大,请预测
年的宣传费用是多少万元?
附:对于一组数据
,
,…,
,其回归直线
中的斜率和截距的最小二乘估计分别为
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD为正三角形.且PA=2
.
![]()
(1)证明:平面PAB⊥平面PBC;
(2)若点P到底面ABCD的距离为2,E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线
,直线
与抛物线
相交于
两点,且当倾斜角为
的直线
经过抛物线
的焦点
时,有
.
![]()
(1)求抛物线
的方程;
(2)已知圆
,是否存在倾斜角不为
的直线
,使得线段
被圆
截成三等分?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】癌症是迄今为止人类尚未攻克的疾病之一,目前,癌症只能尽量预防.某医学中心推出了一种抗癌症的制剂,现对20位癌症病人,进行医学试验测试药效,测试结果分为“病人死亡”和“病人存活”,现对测试结果和药物剂量(单位:
)进行统计,规定病人在服用
(包括
)以上为“足量”,否则为“不足量”,统计结果显示,这20病人
中“病人存活”的有13位,对病人服用的药物剂量统计如下表:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的药物剂量不足的病人共1位.
(1)完成下列
列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为“病人存活”与服用药物的剂量足量有关?
服用药物足量 | 服用药物不足量 | 合计 | |
病人存活 | 1 | ||
病人死亡 | |||
合计 | 20 |
(2)若在该样本“服用药物剂量不足”的病人中随机抽取3位,求这三人中恰有1位“病人存活”的概率.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com