相关习题
 0  264590  264598  264604  264608  264614  264616  264620  264626  264628  264634  264640  264644  264646  264650  264656  264658  264664  264668  264670  264674  264676  264680  264682  264684  264685  264686  264688  264689  264690  264692  264694  264698  264700  264704  264706  264710  264716  264718  264724  264728  264730  264734  264740  264746  264748  264754  264758  264760  264766  264770  264776  264784  266669 

科目: 来源: 题型:

【题目】退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[2080]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[6080]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[2080]的人口分布的概率.从该城市年龄段在[2080]内的市民中随机抽取3人,记抽到“老年人”的人数为则随机变量的数学期望为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为2.

1)求抛物线的方程;

2)若过点作互相垂直的两条直线与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形且,侧面底面,且侧面是正三角形,中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知半径为的球面上有两点,且,球心为,若是球面上的动点,且二面角的大小为,则四面体的外接球表面积为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.

1)写出曲线的普通方程和直线的直角坐标方程;

2)若直线与曲线相交于两点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直,的中点.

(1)求证:平面

(2)求证:平面平面

(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某幼儿园根据部分同年龄段的100名女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96106](单位:厘米),样本数据分组为[9698)[98100)[100102)[102104)[104106)

1)求出的值,并求样本中女童的身高的众数和中位数,平均数;

2)在身高在[100102)[102104)[104106]的三组中,用分层抽样的方法抽取14名女童,则身高数据在[104106]的女童中应抽取多少人数?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,求的图象在处的切线方程;

2)当时,求证:上有唯一零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】“爱国,是人世间最深层、最持久的情感,是一个人立德之源、立功之本。”在中华民族几千年绵延发展的历史长河中,爱国主义始终是激昂的主旋律。爱国汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入(亿元)与科技改造直接收益(亿元)的数据统计如下:

2

3

4

6

8

10

13

21

22

23

24

25

13

22

31

42

50

56

58

68.5

68

67.5

66

66

时,建立了的两个回归模型:模型①:;模型②:;当时,确定满足的线性回归方程为:.

(1)根据下列表格中的数据,比较当时模型①、②的相关指数,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为17亿元时的直接收益.

回归模型

模型①

模型②

回归方程

182.4

79.2

(附:刻画回归效果的相关指数.)

(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小;

(附:用最小二乘法求线性回归方程的系数公式

(3)科技改造后,“东方红”款汽车发动机的热效率大幅提高,服从正态分布,公司对科技改造团队的奖励方案如下:若发动机的热效率不超过,不予奖励;若发动机的热效率超过但不超过,每台发动机奖励2万元;若发动机的热效率超过,每台发动机奖励5万元.求每台发动机获得奖励的数学期望.

(附:随机变量服从正态分布,则.)

查看答案和解析>>

同步练习册答案