科目: 来源: 题型:
【题目】已知数列是等差数列,数列是等比数列,且,的前n项和为.若对任意的恒成立.
(1)求数列,的通项公式;
(2)若数列满足问:是否存在正整数,使得,若存在求出的值,若不存在,说明理由;
(3)若存在各项均为正整数公差为的无穷等差数列,满足,且存在正整数,使得成等比数列,求的所有可能的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(其中是常数,且),曲线在处的切线方程为.
(1)求的值;
(2)若存在(其中是自然对数的底),使得成立,求的取值范围;
(3)设,若对任意,均存在,使得方程有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆过点,,分别为椭圆的右下顶点,且.
(1)求椭圆的方程;
(2)设点在椭圆内,满足直线,的斜率乘积为,且直线,分别交椭圆于点,.
①若,关于轴对称,求直线的斜率;
②若和的面积分别为,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距的,两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.
(1)设,写出关于的函数表达式;
(2)当最小时,集合地点离点多远?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知圆C满足:圆心在轴上,且与圆相外切.设圆C与轴的交点为M,N,若圆心C在轴上运动时,在轴正半轴上总存在定点,使得为定值,则点的纵坐标为_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程,并求时直线的普通方程;
(2)直线和曲线交于、两点,点的直角坐标为,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在椭圆上任取一点(不为长轴端点),连结、,并延长与椭圆分别交于点、两点,已知的周长为8,面积的最大值为.
(1)求椭圆的方程;
(2)设坐标原点为,当不是椭圆的顶点时,直线和直线的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为= ,.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的极坐标方程,并求出曲线与公共弦所在直线的极坐标方程;
(2)若射线与曲线交于两点,与曲线交于点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com