相关习题
 0  264672  264680  264686  264690  264696  264698  264702  264708  264710  264716  264722  264726  264728  264732  264738  264740  264746  264750  264752  264756  264758  264762  264764  264766  264767  264768  264770  264771  264772  264774  264776  264780  264782  264786  264788  264792  264798  264800  264806  264810  264812  264816  264822  264828  264830  264836  264840  264842  264848  264852  264858  264866  266669 

科目: 来源: 题型:

【题目】已知函数的最大值为.

(Ⅰ)求实数的值;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.

(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);

2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?

3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001

附:

,则

.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,且椭圆过点

1)求椭圆的标准方程;

2)设直线交于两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上单调递减,则m的取值范围是____________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,给定个整点,其中.

(Ⅰ)当,从上面的个整点中任取两个不同的整点,求的所有可能值;

(Ⅱ)从上面个整点中任取个不同的整点,.

i)证明:存在互不相同的四个整点,满足,

ii)证明:存在互不相同的四个整点,满足,.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)讨论函数的单调性;

(Ⅲ)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆方程;

(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于两点(异于),直线分别交直线两点. 求证:两点的纵坐标之积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】目前,中国有三分之二的城市面临垃圾围城的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 202051日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50.

现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:

小区

小区

小区

小区

小区

废纸投放量(吨)

5

5.1

5.2

4.8

4.9

塑料品投放量(吨)

3.5

3.6

3.7

3.4

3.3

(Ⅰ)从5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;

(Ⅱ)从5个小区中任取2个小区,记12月份投放的废纸可再造好纸超过4吨的小区个数,求的分布列及期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为常数.

(1)若直线是曲线的一条切线,求实数的值;

(2)当时,若函数上有两个零点.求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,设抛物线C1:的准线1x轴交于椭圆C2的右焦点F2F1C2的左焦点.椭圆的离心率为,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点QMC1上一动点,且在PQ之间移动.

1)当取最小值时,求C1C2的方程;

2)若PF1F2的边长恰好是三个连续的自然数,当MPQ面积取最大值时,求面积最大值以及此时直线MP的方程.

查看答案和解析>>

同步练习册答案