科目: 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为
(t为参数),曲线C的极坐标方程为ρ=4sin(θ+
).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表:
![]()
摄氏温度 |
|
|
|
|
|
|
|
|
热饮杯数 |
|
|
|
|
|
|
|
|
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里。因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少。统计中常用相关系数
来衡量两个变量之间线性关系的强弱.统计学认为,对于变量
、
,如果
,那么负相关很强;如果
,那么正相关很强;如果
,那么相关性一般;如果
,那么相关性较弱。请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ii)记
为不超过
的最大整数,如
,
.对于(i)中求出的线性回归方程
,将
视为气温与当天热饮销售杯数的函数关系.已知气温
与当天热饮每杯的销售利润
的关系是
(单位:元),请问当气温
为多少时,当天的热饮销售利润总额最大?
(参考公式)
,
,![]()
(参考数据)
,
,
.
,
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面四边形
中,E,F是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面
B.异面直线
与
所成的角为90°
C.异面直线
与
所成的角为60°D.直线
与平面
所成的角为30°
查看答案和解析>>
科目: 来源: 题型:
【题目】下列判断正确的是( )
A. “
”是“
”的充分不必要条件
B. 命题“若
,则
”的否命题为“若
,则
”
C. 命题“
,
”的否定是“
,
”
D. 若命题“
”为假命题,则命题
,
都是假命题
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,其中
.
(Ⅰ)若曲线
在点
处的切线方程为
,其中
是自然对数的底数,求
的值:
(Ⅱ)若函数
是
内的减函数,求正数
的取值范围;
(Ⅲ)若方程
无实数根,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
是椭圆
的右焦点,过点
的直线
交椭圆于
两点,当直线
过
的下顶点时,
的斜率为
,当直线
垂直于
的长轴时,
的面积为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)当
时,求直线
的方程;
(Ⅲ)若直线
上存在点
满足
成等比数列,且点
在椭圆外,证明:点
在定直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为
;乙第一次射击的命中率为
,若第一次未射中,则乙进行第二次射击,射击的命中率为
,如果又未中,则乙进行第三次射击,射击的命中率为
.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com