科目: 来源: 题型:
【题目】已知点
,直线
:
,点
为
上一动点,过
作直线
,
为
的中垂线,
与
交于点
,设点
的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若过
的直线与Γ交于
两点,线段
的垂直平分线交
轴于点
,求
与
的比值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱柱
的底面是等边三角形,
在底面ABC上的射影为△ABC的重心G.
![]()
(1)已知
,证明:平面
平面
;
(2)已知平面
与平面ABC所成的二面角为60°,G到直线AB的距离为a,求锐二面角
的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式
c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆
和圆
的极坐标方程分别是
和
.
(1)求圆
和圆
的公共弦所在直线的直角坐标方程;
(2)若射线
:
与圆
的交点为O、P,与圆
的交点为O、Q,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
,直线
:
,点
为
上一动点,过
作直线
,
为
的中垂线,
与
交于点
,设点
的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若过
的直线与Γ交于
两点,线段
的垂直平分线交
轴于点
,求
与
的比值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱柱
的底面是等边三角形,
在底面ABC上的射影为
的重心G.
![]()
(1)已知
,证明:平面
平面
;
(2)若三棱柱
的侧棱与底面所成角的正切值为
,
,求点
到平面
的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量
与尺寸
之间近似满足关系式
(b,c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全国人民团结一心,众志成城,共同抗击疫情.某中学寒假开学后,为了普及传染病知识,增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分100分),竞赛奖励规则如下,得分在
内的学生获三等奖,得分在
内的学生获二等奖,得分在
内的学生获一等奖,其他学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.
![]()
(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若该校所有参赛学生的成绩
近似服从正态分布
,其中
为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该校共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机抽取3名学生进行座谈,设其中竞赛成绩在64分以上的学生数为
,求随机变量
的分布列和均值.
附:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的长轴长为4,右焦点为
,且椭圆
上的点到点
的距离的最小值与最大值的积为1,圆
与
轴交于
两点.
(1)求椭圆
的方程;
(2)动直线
与椭圆
交于
两点,且直线
与圆
相切,求
的面积与
的面积乘积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com