【题目】已知点
,直线
:
,点
为
上一动点,过
作直线
,
为
的中垂线,
与
交于点
,设点
的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若过
的直线与Γ交于
两点,线段
的垂直平分线交
轴于点
,求
与
的比值.
科目:高中数学 来源: 题型:
【题目】为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为45和55.下面是根据调查结果绘制的网民日均浏览购物网站时间的频率分布直方图,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性有10人.
![]()
(1)根据已知条件完成下面的
列联表,并判断是否有90%的把握认为是否为“网购达人”与性别有关;
非网购达人 | 网购达人 | 总计 | |
男 | |||
女 | 10 | ||
总计 |
(2)将上述调査所得到的频率视为概率,现在从该地的网民中随机抽取3名,记被抽取的3名网民中的“网购达人”的人数为X,求X的分布列、数学期望
和方差
.
参考公式:
,其中
.
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马
中,底面ABCD是矩形.
平面
,
,
,以
的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).
![]()
(1)证明:
平面
,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,且离心率为
,过其右焦点F的直线
交椭圆C于M,N两点,交y轴于E点.若
,
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)试判断
是否是定值.若是定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为4,右焦点为
,且椭圆
上的点到点
的距离的最小值与最大值的积为1,圆
与
轴交于
两点.
(1)求椭圆
的方程;
(2)动直线
与椭圆
交于
两点,且直线
与圆
相切,求
的面积与
的面积乘积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图所示),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为
.若“牟合方盖”的体积为
,则正方体的外接球的表面积为__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高二年级开设选修课,选课结束后,有6名同学要求改选历史,现历史选修课开有三个班,若每个班至多可再接收3名同学,那么不同的接收方案共有( )
A.150种B.360种C.510种D.512种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知平面
平面
是边长为2的等边三角形,点
是
的中点,底面
是矩形,
,
为
上一点,且
.
![]()
(1)若
,点
是
的中点,求证:平面
平面
;
(2)是否存在
,使得直线
与平面
所成角的正切值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com