相关习题
 0  265046  265054  265060  265064  265070  265072  265076  265082  265084  265090  265096  265100  265102  265106  265112  265114  265120  265124  265126  265130  265132  265136  265138  265140  265141  265142  265144  265145  265146  265148  265150  265154  265156  265160  265162  265166  265172  265174  265180  265184  265186  265190  265196  265202  265204  265210  265214  265216  265222  265226  265232  265240  266669 

科目: 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,直线过椭圆的左焦点.

1)求椭圆的标准方程;

2)若直线轴交于点是椭圆上的两个动点,的平分线在轴上,.试判断直线是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDCABCD,∠ABC90°,ESD中点.

1)证明:直线AE//平面SBC

2)点F为线段AS的中点,求二面角FCDS的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论(素数即质数,).根据欧拉得出的结论,如下流程图中若输入的值为,则输出的值应属于区间( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目: 来源: 题型:

【题目】已知长方形ABCD中,AB1,∠ABD60°,现将长方形ABCD沿着对角线BD折起,使平面ABD⊥平面BCD,则折后几何图形的外接球表面积为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求曲线的参数方程与直线的普通方程;

2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=axexgx)=x2+2x+b,若曲线yfx)与曲线ygx)都过点P1c).且在点P处有相同的切线l

(Ⅰ)求切线l的方程;

(Ⅱ)若关于x的不等式k[efx]≥gx)对任意x[1+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知O为坐标原点,抛物线E的方程为x22pyp0),其焦点为F,过点M 04)的直线与抛物线相交于PQ两点且OPQ为以O为直角顶点的直角三角形.

(Ⅰ)求E的方程;

(Ⅱ)设点N为曲线E上的任意一点,证明:以FN为直径的圆与x轴相切.

查看答案和解析>>

科目: 来源: 题型:

【题目】四棱锥PABCD中,ABCDABBCABBC1PACD2PA⊥平面ABCDE在棱PB上.

(Ⅰ)求证:ACPD

(Ⅱ)若VPACE,求证:PD∥平面AEC

查看答案和解析>>

同步练习册答案