科目: 来源: 题型:
【题目】为助力湖北新冠疫情后的经济复苏,某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:
单价 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根据以上数据,求
关于
的线性回归方程;
(2)若该产品成本是4元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?
(参考公式:回归方程
,其中
)
查看答案和解析>>
科目: 来源: 题型:
【题目】
时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是( )
![]()
A.2019年全年手机市场出货量中,5月份出货量最多
B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小
C.2019年全年手机市场总出货量低于2018年全年总出货量
D.2018年12月的手机出货量低于当年8月手机出货量
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率为
,设直线
过椭圆
的上顶点和右焦点,坐标原点
到直线
的距离为2.
(1)求椭圆
的方程.
(2)过点
且斜率不为零的直线交椭圆
于
,
两点,在
轴的正半轴上是否存在定点
,使得直线
,
的斜率之积为非零的常数?若存在,求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某家政公司对部分员工的服务进行民意调查,调查按各项服务标准进行量化评分,婴幼儿保姆部对40~50岁和20~30岁各20名女保姆的调查结果如下:
分数 年龄 |
|
|
|
|
|
40~50岁 | 0 | 2 | 4 | 7 | 7 |
20~30岁 | 3 | 5 | 5 | 5 | 2 |
(1)若规定评分不低于80分为优秀保姆,试分别估计这两个年龄段保姆的优秀率;
(2)按照大于或等于80分为优秀保姆,80分以下为非优秀保姆统计.作出
列联表,并判断能否有
的把握认为对保姆工作质量的评价是否优秀与年龄有关.
(3)从所有成绩在70分以上的人中按年龄利用分层抽样抽取10名保姆,再从这10人中选取3人给大家作经验报告,设抽到40~50岁的保姆的人数为
,求出
的分布列与期望值.
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,给出以下四个命题:
①
的图象关于
轴对称;
②
在
上是减函数;
③
是周期函数;
④
在
上恰有两个零点.
其中真命题的序号是______.(请写出所有真命题的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的非负半轴为极轴建立极坐标系.
(1)求曲线
与曲线
的公共点的极坐标;
(2)若点
的极坐标为
,设曲线
与
轴相交于点
,则在曲线
上是否存在点
,使得
,若存在,求出点
的直角坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国是世界上严重缺水的归家之一,某市为了制订合理的节水方案,对家庭用水情况进行了抽样调查,获得了某年100个家庭的月均用水量(单位:
)的数据,将这些数据按照
,
,
,
,
,
,
,
,
分成9组,制成了如图所示的频率分布直方图.
![]()
(1)求图中的
值,若该市有30万个家庭,试估计全市月均用水量不低于
的家庭数;
(2)假设同组中的每个数据都用该组区间的中点值代替,试估计全市家庭月均用水量的平均数;
(3)现从月均用水量在
,
的家庭中,先按照分层抽样的方法抽取9个家庭,再从这9家庭中抽取4个家庭,记这4个家庭中月均用水量在
中的数量为
,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com