相关习题
 0  265068  265076  265082  265086  265092  265094  265098  265104  265106  265112  265118  265122  265124  265128  265134  265136  265142  265146  265148  265152  265154  265158  265160  265162  265163  265164  265166  265167  265168  265170  265172  265176  265178  265182  265184  265188  265194  265196  265202  265206  265208  265212  265218  265224  265226  265232  265236  265238  265244  265248  265254  265262  266669 

科目: 来源: 题型:

【题目】已知抛物线Cy22px的焦点为F,过点F且斜率为1的直线l截得圆:x2+y2p2的弦长为2.

1)求抛物线C的方程;

2)若过点F作互相垂直的两条直线l1l2l1与抛物线C交于AB两点,l2与抛物线C交于DE两点,MN分别为弦ABDE的中点,求|MF||NF|的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】平行四边形ABCD中,∠A2ABBCEF分别是BCAD的中点.将四边形DCEF沿着EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFDBEC.

1)证明:DBEF

2)若AB2,求三棱柱AFDBEC的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】新高考取消文理科,实行“3+3”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在[1545)称为中青年,年龄在[4575)称为中老年),并把调查结果制成如表:

1)请根据上表完成下面2×2列联表,并判断是否有95%的把握认为对新高考的了解与年龄(中青年、中老年)有关?

附:K2.

2)现采用分层抽样的方法从中老年人中抽取8人,再从这8人中随机抽取2人进行深入调查,求事件A:“恰有一人年龄在[4555)”发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,有下列4个命题:

,则的图象关于直线对称;

的图象关于直线对称;

为偶函数,且,则的图象关于直线对称;

为奇函数,且,则的图象关于直线对称.

其中正确的命题为 .(填序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知过抛物线y24x焦点F的直线l交抛物线于AB两点(点A在第一象限),若3,则直线l的斜率为(

A.2B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)判断函数在点处的切线是否过定点?若过,求出该点的坐标;若不过,请说明理由.

2)若有最大值,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】20201月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最有效的方式.在家中适当锻炼,合理休息,能够提高自身免疫力,抵抗该种病毒.某小区为了调查家居民的运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:

1)求a的值,并估计这100位居民锻炼时间的平均值(同一组中的数据用该组区间的中点值代表);

2)小张是该小区的一位居民,他记录了自己7天的锻炼时长:

序号n

1

2

3

4

5

6

7

锻炼时长m(单位:分钟)

10

15

12

20

30

25

35

)根据数据求m关于n的线性回归方程;

)若是(1)中的平均值),则当天被称为有效运动日.估计小张家第8天是否是有效运动日

附;在线性回归方程中,

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的焦距为4.且过点

1)求椭圆E的方程;

2)设,过B点且斜率为的直线l交椭圆E于另一点M,交x轴于点Q,直线AM与直线相交于点P.证明:O为坐标原点).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,平面ABC,平面平面PBC

1)证明:平面PBC

2)求点C到平面PBA的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】角谷猜想,也叫猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取,根据上述过程,得出63105168421,共9个数.若,根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案