科目: 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒(
肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为
,
两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下
的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
| 16 | 34 | 50 |
| 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对
组、
组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有
的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
|
|
|
|
|
|
|
|
|
|
|
|
附:![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:
的四个顶点围成的四边形的面积为
,原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知定点
,是否存在过
的直线
,使
与椭圆
交于
,
两点,且以
为直径的圆过椭圆
的左顶点?若存在,求出
的方程:若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在
省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的
指标
和
指标
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
(1)试求
与
间的相关系数
,并说明
与
是否具有较强的线性相关关系(若
,则认为
与
具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立
关于
的回归方程,并预测当
指标为7时,
指标的估计值.
(3)若某城市的共享单车
指标
在区间
的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至
指标
在区间
内现已知
省某城市共享单车的
指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线
中斜率和截距的最小二乘估计分别为
,,
相关系数![]()
参考数据:
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形
中,
为
的中点,将
沿直线
翻折成
,连结
,
为
的中点,则在翻折过程中,下列说法中所有正确的序号是_______.
①存在某个位置,使得
;
②翻折过程中,
的长是定值;
③若
,则
;
④若
,当三棱锥
的体积最大时,三棱锥
的外接球的表面积是
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在棱长为1的正方体
中,E,F分别为线段CD和
上的动点,且满足
,则四边形
所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和( )
![]()
A. 有最小值
B. 有最大值
C. 为定值3D. 为定值2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
![]()
![]()
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的参数方程为
(
为参数),与圆
关于直线
对称的圆为
.以原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程是
.
(1)设直线
与
轴和
轴的交点分别为
,
,
为圆
上的任意一点,求
的最大值.
(2)过点
且与直线
平行的直线
交圆
于
,
两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
:
的焦点为
,过焦点做倾斜角为的120°的直线交
于
,
两点,
为坐标原点,
.
(1)求抛物线
的方程;
(2)过抛物线焦点,且与坐标轴不垂直的直线l交抛物线于
,
两点,
,
在抛物线上,且
,
,若
,
,
,
四点都在圆
上,求圆
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com