相关习题
 0  265120  265128  265134  265138  265144  265146  265150  265156  265158  265164  265170  265174  265176  265180  265186  265188  265194  265198  265200  265204  265206  265210  265212  265214  265215  265216  265218  265219  265220  265222  265224  265228  265230  265234  265236  265240  265246  265248  265254  265258  265260  265264  265270  265276  265278  265284  265288  265290  265296  265300  265306  265314  266669 

科目: 来源: 题型:

【题目】如图,在三棱柱中,,D,E分别是的中点.

(1)求证:DE∥平面

(2)若,求证:平面平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)当时,记函数,若函数至少有三个零点,求实数的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,直线与圆相切.

1)求椭圆的方程;

2)过点的直线与椭圆交于不同两点,线段的中垂线为,求直线轴上的截距的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为评估设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

78

79

81

82

83

84

85

86

87

88

89

90

91

93

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):

;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备的性能等级.

(2)将直径小于等于的零件或直径大于等于的零件认定为是“次品”,将直径小于等于的零件或直径大于等于的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数的数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,为平行四边形,平面,且,点的中点.

1)求证:平面

2)在线段(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形若直角三角形中较小的锐角,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.

是否满意

组别

不满意

满意

合计

16

34

50

2

45

50

合计

21

79

100

1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;

2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?

附表:

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,若处的切线为

(Ⅰ)求实数的值;

(Ⅱ)若不等式对任意恒成立,求的取值范围;

(Ⅲ)设其中,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定口径误差的计算方式为:管件内外两个口径实际长分别为,标准长分别为口径误差只要口径误差不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.

(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;

(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在中,分别是边上的中点,将沿折起到的位置,使如图2

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案