相关习题
 0  265175  265183  265189  265193  265199  265201  265205  265211  265213  265219  265225  265229  265231  265235  265241  265243  265249  265253  265255  265259  265261  265265  265267  265269  265270  265271  265273  265274  265275  265277  265279  265283  265285  265289  265291  265295  265301  265303  265309  265313  265315  265319  265325  265331  265333  265339  265343  265345  265351  265355  265361  265369  266669 

科目: 来源: 题型:

【题目】为了治理空气污染,某市设个监测站用于监测空气质量指数,其中在轻度污染区、中度污染区、重度污染区分别设有个监测站,并以个监测站测得的的平均值为依据播报该市的空气质量.

1)若某日播报的,已知轻度污染区平均值为,中度污染区平均值为,求重试污染区平均值;

2)如图是月份天的的频率分布直方图,月份仅有.

①某校参照官方公布的,如果周日小于就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;

②环卫部门从月份不小于的数据中抽取两天的数据进行研究,求抽取的这两天中值都在的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.

查看答案和解析>>

科目: 来源: 题型:

【题目】按照水果市场的需要等因素,水果种植户把某种成熟后的水果按其直径的大小分为不同等级.某商家计划从该种植户那里购进一批这种水果销售.为了了解这种水果的质量等级情况,现随机抽取了100个这种水果,统计得到如下直径分布表(单位:mm):

d

等级

三级品

二级品

一级品

特级品

特级品

频数

1

m

29

n

7

用分层抽样的方法从其中的一级品和特级品共抽取6个,其中一级品2.

1)估计这批水果中特级品的比例;

2)已知样本中这批水果不按等级混装的话20个约1斤,该种植户有20000斤这种水果待售,商家提出两种收购方案:

方案A:以6.5/斤收购;

方案B:以级别分装收购,每袋20个,特级品8/袋,一级品5/袋,二级品4/袋,三级品3/.

用样本的频率分布估计总体分布,问哪个方案种植户的收益更高?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前n项和为 ,且.在①;②;③这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分).

1)求数列的通项公式;

2)求数列的前项和

查看答案和解析>>

科目: 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的普通方程为,直线的参数方程为为参数),其中.以坐标为极点,以轴非负半轴为极轴,建立极坐标系.

1)求曲线的极坐标方程和直线的普通方程;

2)设点的极坐标方程为,直线的交点分别为.当为等腰直角三角形时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数

1)讨论函数的单调性;

2)若函数有且仅有一个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】动点与定点的距离和该动点到直线的距离的比是常数

1)求动点轨迹方程

2)已知点,问在轴上是否存在一点,使得过点的任一条斜率不为0的弦交曲线两点,都有

查看答案和解析>>

科目: 来源: 题型:

【题目】现从某学校中选出名学生,统计了名学生一周的户外运动时间(分钟)总和,得到如图所示的频率分布直方图和统计表格.

1)写出的值,并估计该学校人均每周的户外运动时间(同一组数据用该组区间的中点值作代表);

2)假设,则户外运动时长为的学生中,男生人数比女生人数多的概率.

3)若,完成下列列联表,并回答能否有90%的把握认为“每周至少运动130分钟与性别有关”?

每周户外运动时间不少于130分钟

每周户外运动时间少于130分钟

合计

合计

附:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当x[0π]时,f(x)≥0恒成立,求实数a的取值范围;(参考数据:sin1≈0.84)

2)当a=1时,数列{an}满足:0<an<1=f(an),求证:{an}是递减数列.

查看答案和解析>>

同步练习册答案