科目: 来源: 题型:
【题目】为了治理空气污染,某市设个监测站用于监测空气质量指数,其中在轻度污染区、中度污染区、重度污染区分别设有、、个监测站,并以个监测站测得的的平均值为依据播报该市的空气质量.
(1)若某日播报的为,已知轻度污染区平均值为,中度污染区平均值为,求重试污染区平均值;
(2)如图是年月份天的的频率分布直方图,月份仅有天在内.
①某校参照官方公布的,如果周日小于就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;
②环卫部门从月份不小于的数据中抽取两天的数据进行研究,求抽取的这两天中值都在的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】设,分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆于点,且的周长为.
(1)求椭圆的方程;
(2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.
查看答案和解析>>
科目: 来源: 题型:
【题目】按照水果市场的需要等因素,水果种植户把某种成熟后的水果按其直径的大小分为不同等级.某商家计划从该种植户那里购进一批这种水果销售.为了了解这种水果的质量等级情况,现随机抽取了100个这种水果,统计得到如下直径分布表(单位:mm):
d | |||||
等级 | 三级品 | 二级品 | 一级品 | 特级品 | 特级品 |
频数 | 1 | m | 29 | n | 7 |
用分层抽样的方法从其中的一级品和特级品共抽取6个,其中一级品2个.
(1)估计这批水果中特级品的比例;
(2)已知样本中这批水果不按等级混装的话20个约1斤,该种植户有20000斤这种水果待售,商家提出两种收购方案:
方案A:以6.5元/斤收购;
方案B:以级别分装收购,每袋20个,特级品8元/袋,一级品5元/袋,二级品4元/袋,三级品3元/袋.
用样本的频率分布估计总体分布,问哪个方案种植户的收益更高?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知为等差数列,各项为正的等比数列的前n项和为, ,且,,.在①;②;③这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分).
(1)求数列和的通项公式;
(2)求数列的前项和
查看答案和解析>>
科目: 来源: 题型:
【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是( )
A.54周岁以上参保人数最少B.18~29周岁人群参保总费用最少
C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的普通方程为,直线的参数方程为(为参数),其中.以坐标为极点,以轴非负半轴为极轴,建立极坐标系.
(1)求曲线的极坐标方程和直线的普通方程;
(2)设点,的极坐标方程为,直线与的交点分别为,.当为等腰直角三角形时,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】动点与定点的距离和该动点到直线的距离的比是常数.
(1)求动点轨迹方程;
(2)已知点,问在轴上是否存在一点,使得过点的任一条斜率不为0的弦交曲线于两点,都有.
查看答案和解析>>
科目: 来源: 题型:
【题目】现从某学校中选出名学生,统计了名学生一周的户外运动时间(分钟)总和,得到如图所示的频率分布直方图和统计表格.
(1)写出的值,并估计该学校人均每周的户外运动时间(同一组数据用该组区间的中点值作代表);
(2)假设,则户外运动时长为的学生中,男生人数比女生人数多的概率.
(3)若,完成下列列联表,并回答能否有90%的把握认为“每周至少运动130分钟与性别有关”?
每周户外运动时间不少于130分钟 | 每周户外运动时间少于130分钟 | 合计 | |
男 | |||
女 | |||
合计 |
附:,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(1)当x∈[0,π]时,f(x)≥0恒成立,求实数a的取值范围;(参考数据:sin1≈0.84)
(2)当a=1时,数列{an}满足:0<an<1,=f(an),求证:{an}是递减数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com