相关习题
 0  265309  265317  265323  265327  265333  265335  265339  265345  265347  265353  265359  265363  265365  265369  265375  265377  265383  265387  265389  265393  265395  265399  265401  265403  265404  265405  265407  265408  265409  265411  265413  265417  265419  265423  265425  265429  265435  265437  265443  265447  265449  265453  265459  265465  265467  265473  265477  265479  265485  265489  265495  265503  266669 

科目: 来源: 题型:

【题目】若存在常数,使对任意的,都有,则称数列数列.

1)已知是公差为2的等差数列,其前n项和为.数列,求的取值范围;

2)已知数列的各项均为正数,记数列的前n项和为,数列的前n项和为,且.

①求证:数列是等比数列;

②设,试证明:存在常数,对于任意的,数列都是数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求a的值;

2)令,若对任意,有恒成立,求a的取值范围;

3)设mn为实数,且,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆经过,且右焦点坐标为.

1)求椭圆的标准方程;

2)设AB为椭圆的左,右顶点,C为椭圆的上顶点,P为椭圆上任意一点(异于AB两点),直线AC与直线BP相交于点M,直线BC与直线AP相交于点N,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,海岸公路MN的北方有一个小岛A(大小忽略不计)盛产海产品,在公路MNB处有一个海产品集散中心,点CB的正西方向10处,,计划开辟一条运输线将小岛的海产品运送到集散中心.现有两种方案:①沿线段AB开辟海上航线:②在海岸公路MN上选一点P建一个码头,先从海上运到码头,再公路MN运送到集散中心.已知海上运输、岸上运输费用分别为400/200/.

1)求方案①的运输费用;

2)请确定P点的位置,使得按方案②运送时运输费用最低?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱柱ABCD-A1B1C1D1中,ABCDAB1BC,且AA1AB.求证:

1AB平面D1DCC1

2AB1⊥平面A1BC.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知abc为正实数,且满足a+b+c1.证明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块AB,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|2|MB|1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.

1)将以射线Bx为始边,射线BM为终边的角xBM记为φ0≤φ),用表示点M的坐标,并求出C的普通方程;

2)已知过C的左焦点F,且倾斜角为α0≤α)的直线l1C交于DE两点,过点F且垂直于l1的直线l2C交于GH两点.|GH|依次成等差数列时,求直线l2的普通方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.(其中常数,是自然对数的底数)

1)若,求上的极大值点;

2)()证明上单调递增;

)求关于的方程上的实数解的个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,P为直线上的动点,动点Q满足,且原点O在以为直径的圆上.记动点Q的轨迹为曲线C

1)求曲线C的方程:

2)过点的直线与曲线C交于AB两点,点D(异于AB)在C上,直线分别与x轴交于点MN,且,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】足球运动被誉为世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行点球测试来决定是否录取,规则如下:

1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了点球测试,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求

2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.

i)求(直接写出结果即可);

ii)证明:数列为等比数列.

查看答案和解析>>

同步练习册答案