相关习题
 0  265515  265523  265529  265533  265539  265541  265545  265551  265553  265559  265565  265569  265571  265575  265581  265583  265589  265593  265595  265599  265601  265605  265607  265609  265610  265611  265613  265614  265615  265617  265619  265623  265625  265629  265631  265635  265641  265643  265649  265653  265655  265659  265665  265671  265673  265679  265683  265685  265691  265695  265701  265709  266669 

科目: 来源: 题型:

【题目】已知梯形ABCDP为三角形BCD内一点(包括边界),,则的取值范围为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数图象过点,且在区间上单调.又的图象向左平移个单位之后与原来的图象重合,当,且时,,则

A.B.C.1D.-1

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若,证明:当时,;当时,

(2)若的极大值点,求

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADCDADBCPA=AD=CD=2BC=3EPD的中点,点FPC上,且

(Ⅰ)求证:CD⊥平面PAD

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)设点GPB上,且.判断直线AG是否在平面AEF内,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】秉承提升学生核心素养的理念,学校开设以提升学生跨文化素养为核心的多元文化融合课程.选某艺术课程的学生唱歌、跳舞至少会一项,已知会唱歌的有人,会跳舞的有人,现从中选人,设为选出的人中既会唱歌又会跳舞的人数,且

(1)求选该艺术课程的学生人数;

(2)写出的概率分布列并计算.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 : (1)曲线的斜率为的切线方程为__________;

(2),记在区间上的最大值为.最小时,的值为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)a(x1)lnx(aR)g(x)(1x)ex.

1)讨论函数f(x)的单调性;

2)若对任意给定的x0[11],在区间(0e]上总存在两个不同的xi(i12),使得f(xi)g(x0)成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】武汉某科技公司为提高市场销售业绩,现对某产品在部分营销网点进行试点促销活动.现有两种活动方案,在每个试点网点仅采用一种活动方案,经统计,20181月至6月期间,每件产品的生产成本为10元,方案1中每件产品的促销运作成本为5元,方案2中每件产品的促销运作成本为2元,其月利润的变化情况如图①折线图所示.

1)请根据图①,从两种活动方案中,为该公司选择一种较为有利的活动方案(不必说明理由);

2)为制定本年度该产品的销售价格,现统计了8组售价xi(单位:元/件)和相应销量y(单位:件)(i12…8)并制作散点图(如图②),观察散点图可知,可用线性回归模型拟合yx的关系,试求y关于x的回归方程(系数精确到整数);

参考公式及数据:40660xiyi206630x12968

3)公司策划部选1200lnx+5000x3+1200两个模型对销量与售价的关系进行拟合,现得到以下统计值(如表格所示):

x3+1200

52446.95

122.89

124650

相关指数

R

R

相关指数:R21

i)试比较R12R22的大小(给出结果即可),并由此判断哪个模型的拟合效果更好;

ii)根据(1)中所选的方案和(i)中所选的回归模型,求该产品的售价x定为多少时,总利润z可以达到最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知A01),B0,﹣1),M(﹣10),动点P为曲线C上任意一点,直线PAPB的斜率之积为,动直线l与曲线C相交于不同两点Qx1y1),Rx2y2),其中y10y20且满足

1)求曲线C的方程;

2)若直线lx轴相交于一点N,求N点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD的边长为a,∠D60°,点HDC边中点,现以线段AH为折痕将DAH折起使得点D到达点P的位置且平面PHA⊥平面ABCH,点EF分别为ABAP的中点.

1)求证:平面PBC∥平面EFH

2)若三棱锥PEFH的体积等于,求a的值.

查看答案和解析>>

同步练习册答案