科目: 来源: 题型:
【题目】已知点
为平面内一定点,动点
为平面内曲线
上的任意一点,且满足
,过原点的直线交曲线
于
两点.
(1)证明:直线
与直线
的斜率之积为定值;
(2)设直线
,
交直线
于
、
两点,求线段
长度的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( )
![]()
A. 平面
平面ABN B. ![]()
C. 平面
平面AMN D. 平面
平面AMN
查看答案和解析>>
科目: 来源: 题型:
【题目】给出如下四个命题:①若“
且
”为假命题,则
均为假命题;②命题“若
,则
”的否命题为“若
,则
”;③命题“
,
”的否定是“
,
”;④在
中,“
”是“
”的充要条件.其中正确的命题是( )
A.②③④B.①③④C.①②④D.①②③
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
过点
,倾斜角为
,在以坐标原点为极点,
轴的非负半轴为极轴的极坐标系中,曲线
的方程为
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)若直线
与曲线
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在矩形
中,
为边
的中点,将
沿直线
折起到
(
平面
)的位置,
为线段
的中点.
![]()
(1)求证:
平面
;
(2)已知
,当平面
平面
时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,直线l的参数方程为
(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.曲线C的极坐标方程为
.
(1)求直线l的普通方程及曲线C的直角坐标方程;
(2)设点
,直线l与曲线C相交于A,B两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于
,直线l与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)过点O作直线l的垂线,垂足为D.若
,求动点D的轨迹方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
,其中a为常数,e是自然对数的底数,曲线
在其与y轴的交点处的切线记作
,曲线
在其与x轴的交点处的切线记作
,且
.
(1)求
之间的距离;
(2)若存在x使不等式
成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com