相关习题
 0  265725  265733  265739  265743  265749  265751  265755  265761  265763  265769  265775  265779  265781  265785  265791  265793  265799  265803  265805  265809  265811  265815  265817  265819  265820  265821  265823  265824  265825  265827  265829  265833  265835  265839  265841  265845  265851  265853  265859  265863  265865  265869  265875  265881  265883  265889  265893  265895  265901  265905  265911  265919  266669 

科目: 来源: 题型:

【题目】已知是由)个整数按任意次序排列而成的数列,数列满足),按从大到小的顺序排列而成的数列,记.

1)证明:当为正偶数时,不存在满足)的数列.

2)写出),并用含的式子表示.

3)利用,证明:.(参考:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆),过原点的两条直线分别与交于点,得到平行四边形.

1)当为正方形时,求该正方形的面积.

2)若直线关于轴对称,上任意一点的距离分别为,当为定值时,求此时直线的斜率及该定值.

3)当为菱形,且圆内切于菱形时,求满足的关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是各项均为正数的等差数列,其公差大于零.若线段的长分别为,则( .

A.对任意的,均存在以为三边的三角形

B.对任意的,均不存在以为三边的三角形

C.对任意的,均存在以为三边的三角形

D.对任意的,均不存在以为三边的三角形

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列中,的前项和为,且满足.

1)试求数列的通项公式;

2)令的前项和,证明:

3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的点处,乙船在中间点处,丙船在最后面的点处,且.一架无人机在空中的点处对它们进行数据测量,在同一时刻测得 .(船只与无人机的大小及其它因素忽略不计)

(1)求此时无人机到甲、丙两船的距离之比;

(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:在四棱锥中, 平面,底面是正方形, .

(1)求异面直线所成角的大小(结果用反三角函数值表示);

(2)求点分别是棱的中点,求证: 平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】设单调函数的定义域为,值域为,如果单调函数使得函数的值域也是,则称函数是函数的一个保值域函数.已知定义域为的函数,函数互为反函数,且的一个保值域函数”,的一个保值域函数,则__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式对于任意成立,求正实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从00010990.

1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)

2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.

设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为恰当选择"的概率是多少?(均值,标准差均精确到0.1

(参考公式和数据:)

查看答案和解析>>

同步练习册答案