科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点.
![]()
(1)若
为线段
上的动点,证明:平面
平面
;
(2)若
为线段
,
,
上的动点(不含
,
),
,三棱锥
的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数
(个)和温度
(
)的7组观测数据,其散点图如所示:
![]()
根据散点图,结合函数知识,可以发现产卵数
和温度
可用方程
来拟合,令
,结合样本数据可知
与温度
可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
|
|
|
|
|
|
27 | 74 |
| 182 |
|
|
表中
,
.
(1)求
和温度
的回归方程(回归系数结果精确到
);
(2)求产卵数
关于温度
的回归方程;若该地区一段时间内的气温在
之间(包括
与
),估计该品种一只昆虫的产卵数的范围.(参考数据:
,
,
,
,
.)
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方体
中,点
在线段
上移动,有下列判断:①平面
平面
;②平面
平面
;③三棱锥
的体积不变;④
平面
.其中,正确的是______.(把所有正确的判断的序号都填上)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
科目: 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
![]()
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=
,cos C=![]()
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设
个正数
依次围成一个圆圈,其中![]()
是公差为
的等差数列,而
是公比为
的等比数列.
(1)若
,求数列
的所有项的和
;
(2)若
,求
的最大值;
(3)当
时是否存在正整数
,满足
?若存在,求出
值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
的定义域为
,如果存在非零常数
,对于任意
,都有
,则称函数
是“似周期函数”,非零常数
为函数
的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”
的“似周期”为
,那么它是周期为
的周期函数;
②函数
是“似周期函数”;
③函数
是“似周期函数”;
④如果函数
是“似周期函数”,那么“
,
”.
其中是真命题的序号是___________.(写出所有满足条件的命题序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
![]()
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com