相关习题
 0  265734  265742  265748  265752  265758  265760  265764  265770  265772  265778  265784  265788  265790  265794  265800  265802  265808  265812  265814  265818  265820  265824  265826  265828  265829  265830  265832  265833  265834  265836  265838  265842  265844  265848  265850  265854  265860  265862  265868  265872  265874  265878  265884  265890  265892  265898  265902  265904  265910  265914  265920  265928  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点.

1)若为线段上的动点,证明:平面平面

2)若为线段上的动点(不含),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体中,点在线段上移动,有下列判断:①平面平面;②平面平面;③三棱锥的体积不变;④平面.其中,正确的是______.(把所有正确的判断的序号都填上)

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业在精准扶贫行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目: 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.

若在图④中随机选取-点,则此点取自阴影部分的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

查看答案和解析>>

科目: 来源: 题型:

【题目】个正数依次围成一个圆圈,其中是公差为的等差数列,而是公比为的等比数列.

1)若,求数列的所有项的和

2)若,求的最大值;

3)当时是否存在正整数,满足?若存在,求出值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数似周期函数,非零常数为函数似周期”.现有下面四个关于似周期函数的命题:

①如果似周期函数似周期,那么它是周期为的周期函数;

②函数似周期函数

③函数似周期函数

④如果函数似周期函数,那么”.

其中是真命题的序号是___________.(写出所有满足条件的命题序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,判断的奇偶性,并说明理由;

2)当时,若,求的值;

3)若,且对任意不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

同步练习册答案