科目: 来源: 题型:
【题目】如图,在三棱柱
中,
,顶点
在底面
上的射影恰为点
,且![]()
![]()
(1)证明:平面![]()
平面
;
(2)求棱
与
所成的角的大小;
(3)若点
为
的中点,并求出二面角
的平面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,当
,
时,
的值域为
,
,当
,
时,
的值域为
,
,依此类推,一般地,当
,
时,
的值域为
,
,其中
、
为常数,且
,
.
(1)若
,求数列
,
的通项公式;
(2)若
,问是否存在常数
,使得数列
满足
?若存在,求
的值;若不存在,请说明理由;
(3)若
,设数列
,
的前
项和分别为
,
,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
满足
.
①存在
可以生成的数列
是常数数列;
②“数列
中存在某一项
”是“数列
为有穷数列”的充要条件;
③若
为单调递增数列,则
的取值范围是
;
④只要
,其中
,则
一定存在;
其中正确命题的序号为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
的前
项和记为
若对任意的正整数n,总存在正整数m,使得
,则称
是“H数列”.
(1)若数列
的通项公式
,判断
是否为“H数列”;
(2)等差数列
,公差
,
,求证:
是“H数列”;
(3)设点
在直线
上,其中
,
.若
是“H数列”,求
满足的条件.
查看答案和解析>>
科目: 来源: 题型:
【题目】
是定义在
上且满足如下条件的函数
组成的集合:①对任意的
,都有
②存在常数
使得对任意的
,都有
.
(1)设
问
是否属于
?说明理由;
(2)若
如果存在
使得
证明:这样的
是唯一的;
(3)设
且
试求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】两城市
和
相距
,现计划在两城市外以
为直径的半圆
上选择一点
建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城
和城
的总影响度为城
和城
的影响度之和,记
点到城
的距离为
,建在
处的垃圾处理场对城
和城
的总影响度为
,统计调查表明:垃圾处理场对城
的影响度与所选地点到城
的距离的平方成反比,比例系数为4,对城
的影响度与所选地点到城
的距离的平方成反比,比例系数为
,当垃圾处理场建在
的中点时,对城
和城
的总影响度为0.065;
![]()
(1)将
表示成
的函数;
(2)判断
上是否存在一点,使建在此处的垃圾处理场对城
和城
的总影响度最小?若存在,求出该点到城
的距离;若不存在,说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)将曲线
上各点的纵坐标伸长为原来的
倍(横坐标不变)得到曲线
,求
的参数方程;
(2)若
,
分别是直线
与曲线
上的动点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】蚂蚁森林是支付宝客户端为首期“碳账户”设计的一款公益行动:用户通过步行、地铁出行、在线缴纳水电煤气费、网络挂号、网络购票等行为就会减少相应的碳排放量,可以用来在支付宝里养一棵虚拟的树.这棵树长大后,公益组织、环保企业等蚂蚁生态伙伴们可以在现实沙漠化地区(阿拉善、通辽、库布齐等)种下一棵实体的树目前通辽地区对部分基地樟子松幼苗的培育技术进行了改进,为了了解改进后的效果,现从改进前后的树苗培育基地各抽取了
株产品作为样本,检测其同样生长周期的高度(单位:
),若高度不低于
才适合移植,否则继续等待生长图1是改进前的样本的频率分布直方图,表2是改进后的样本频率分布表.
图1
![]()
表2技术改进后样本的频率分布表
高度 | 频数 |
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据图1和表2提供的信息,试从移植率的角度对培育技术改进前后的优劣进行比较;
(2)估计培育技术未改进的基地树苗高度的平均数;
(3)在市场中,规定高度在
内的为三等苗,
内的为二等苗,
内的为一等苗.现从表2高度不低于
的树苗样本中采用分层抽样的方法抽取
株,再从这
株幼苗中随机抽取
株,求这
株中一、二、三等苗都有的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com