相关习题
 0  265785  265793  265799  265803  265809  265811  265815  265821  265823  265829  265835  265839  265841  265845  265851  265853  265859  265863  265865  265869  265871  265875  265877  265879  265880  265881  265883  265884  265885  265887  265889  265893  265895  265899  265901  265905  265911  265913  265919  265923  265925  265929  265935  265941  265943  265949  265953  265955  265961  265965  265971  265979  266669 

科目: 来源: 题型:

【题目】已知函数,若同时满足以下条件:

在D上单调递减或单调递增;

存在区间,使 上的值域是,那么称为闭函数.

(1)求闭函数符合条件的区间

(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;

(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在数列中,若是正整数,且,则称D-数列”.

(1) 举出一个前五项均不为零的D-数列”(只要求依次写出该数列的前五项)

(2) D-数列中,,数列满足,写出数列的通项公式,并分别判断当时,的极限是否存在,如果存在,求出其极限值(若不存在不需要交代理由)

(3) 证明: D-数列中的最大项为,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线分别与线段和直线交于点.

(1) ,求的值;

(2) 为线段的中点,求证: 直线与该抛物线有且仅有一个公共点.

(3) ,直线的斜率存在,且与该抛物线有且仅有一个公共点,试问是否一定为线段的中点? 说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为千元.设该储油罐的建造费用为千元.

(1) 写出关于的函数表达式,并求该函数的定义域;

(2) 若预算为万元,求所能建造的储油罐中的最大值(精确到),并求此时储油罐的体积(单位: 立方米,精确到立方米).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在x轴上分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且

1)求椭圆方程;

2)对于x轴上的某一点TT作不与坐标轴平行的直线L交椭圆于两点,若存在x轴上的点S,使得对符合条件的L恒有成立,我们称ST的一个配对点,当T为左焦点时,求T的配对点的坐标;

3)在(2)条件下讨论当T在何处时,存在有配对点?

查看答案和解析>>

科目: 来源: 题型:

【题目】现有流量均为的两条河流汇合于某处后,不断混合,它们的含沙量分别为.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流往相邻两个观测点的过程中,其混合效果相当于两股水流在1秒内交换的水量,其交换过程为从A股流入B的水量,经混合后,又从B股流入A水并混合,问从第几个观测点开始,两股河水的含沙量之差小于.(不考虑泥沙沉淀).

查看答案和解析>>

科目: 来源: 题型:

【题目】设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(αβ),函数

(1)证明f(x)在区间(α,β)上是增函数;

(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个给定的正边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为______

查看答案和解析>>

科目: 来源: 题型:

【题目】过双曲线的右支上的一点P作一直线l与两渐近线交于AB两点,其中P的中点;

1)求双曲线的渐近线方程;

2)当P坐标为时,求直线l的方程;

3)求证:是一个定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列的前项和为,若,则称数列”.

1)若数列,且,求的取值范围;

2)若是等差数列,首项为,公差为,且,判断是否为数列

3)设数列是等比数列,公比为,若数列都是数列,求的取值范围.

查看答案和解析>>

同步练习册答案