科目: 来源: 题型:
【题目】已知函数,若同时满足以下条件:
①在D上单调递减或单调递增;
②存在区间,使在 上的值域是,那么称为闭函数.
(1)求闭函数符合条件②的区间 ;
(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;
(3)若是闭函数,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在数列中,若是正整数,且,,则称为“D-数列”.
(1) 举出一个前五项均不为零的“D-数列”(只要求依次写出该数列的前五项);
(2) 若“D-数列”中,,,数列满足,,写出数列的通项公式,并分别判断当时,与的极限是否存在,如果存在,求出其极限值(若不存在不需要交代理由);
(3) 证明: 设“D-数列”中的最大项为,证明: 或.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线分别与线段和直线交于点.
(1) 若,求的值;
(2) 若,为线段的中点,求证: 直线与该抛物线有且仅有一个公共点.
(3) 若,直线的斜率存在,且与该抛物线有且仅有一个公共点,试问是否一定为线段的中点? 说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为千元.设该储油罐的建造费用为千元.
(1) 写出关于的函数表达式,并求该函数的定义域;
(2) 若预算为万元,求所能建造的储油罐中的最大值(精确到),并求此时储油罐的体积(单位: 立方米,精确到立方米).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在x轴上分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且.
(1)求椭圆方程;
(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于两点,若存在x轴上的点S,使得对符合条件的L恒有成立,我们称S为T的一个配对点,当T为左焦点时,求T的配对点的坐标;
(3)在(2)条件下讨论当T在何处时,存在有配对点?
查看答案和解析>>
科目: 来源: 题型:
【题目】现有流量均为的两条河流汇合于某处后,不断混合,它们的含沙量分别为和.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流往相邻两个观测点的过程中,其混合效果相当于两股水流在1秒内交换的水量,其交换过程为从A股流入B股的水量,经混合后,又从B股流入A股水并混合,问从第几个观测点开始,两股河水的含沙量之差小于.(不考虑泥沙沉淀).
查看答案和解析>>
科目: 来源: 题型:
【题目】设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数
(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个给定的正边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】过双曲线的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是的中点;
(1)求双曲线的渐近线方程;
(2)当P坐标为时,求直线l的方程;
(3)求证:是一个定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列的前项和为,若,则称是“数列”.
(1)若是“数列”,且,,,,求的取值范围;
(2)若是等差数列,首项为,公差为,且,判断是否为“数列”;
(3)设数列是等比数列,公比为,若数列与都是“数列”,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com