科目: 来源: 题型:
【题目】如图,已知直线
与抛物线
(
)交于
、
两点,
为坐标原点,
.
![]()
(1)求直线
的方程和抛物线
的方程;
(2)若抛物线
上一动点
从
到
运动时(
不与
、
重合),求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
中,
,前
项和为
,且
.
(1)求
,
的值;
(2)证明:数列
是等差数列,并写出其通项公式;
(3)设
(
),试问是否存在正整数
,
(其中
,使得
,
,
成等比数列?若存在,求出所有满足条件的数对
;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
,函数
,记
.把函数
的最大值
称为函数
的“线性拟合度”.
(1)设函数
,
,
,求此时函数
的“线性拟合度”
;
(2)若函数
,
的值域为
(
),
,求证:
;
(3)设
,
,求
的值,使得函数
的“线性拟合度”
最小,并求出
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
,
是圆
上的一个动点,
为圆心,线段
的垂直平分线与直线
的交点为
.
(1)求点
的轨迹
的方程;
(2)设
与
轴的正半轴交于点
,直线
与
交于
两点(
不经过
点),且
,证明:直线
经过定点,并写出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第3季度内,洗衣机销量约占
,电视机销量约占
,电冰箱销量约占
).根据该图,以下结论中一定正确的是( )
![]()
A. 电视机销量最大的是第4季度
B. 电冰箱销量最小的是第4季度
C. 电视机的全年销量最大
D. 电冰箱的全年销量最大
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,且离心率为
,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.
【答案】(Ⅰ)
(Ⅱ)见解析
【解析】
(Ⅰ)由题意可求得
,则
,椭圆
的方程为
.
(Ⅱ)设
,
,
当直线
的斜率不存在或直线
的斜率不存在时,
.
当直线
、
的斜率存在时,
,设直线
的方程为
,联立直线方程与椭圆方程,结合韦达定理计算可得直线
的斜率为
,直线
的斜率为
,则
.综上可得:直线
与
的斜率之积为定值
.
(Ⅰ)设
由题
,
解得
,则
,
椭圆
的方程为
.
(Ⅱ)设
,
,当直线
的斜率不存在时,
设
,则
,直线
的方程为
代入
,
可得
,
,则
,
直线
的斜率为
,直线
的斜率为
,
,
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
设直线
的方程为
,
则由
消去
可得:
,
又
,则
,代入上述方程可得:
,
,
则
,
设直线
的方程为
,同理可得
,
直线
的斜率为![]()
直线
的斜率为
,
.
所以,直线
与
的斜率之积为定值
,即
.
【点睛】
(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.
(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.
【题型】解答题
【结束】
21
【题目】已知函数f(x)=(x+b)(
-a),(b>0),在(-1,f(-1))处的切线方程为(e-1)x+ey+e-1=0.
(Ⅰ)求a,b;
(Ⅱ)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2-x1≤1+
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
的离心率
,
分别是椭圆
的左右两个顶点,圆
的半径为
,过点
作圆
的切线,切点为
,在
轴的上方交椭圆
于点
.
![]()
(1)求直线
的方程;
(2)求
的值;
(3)设
为常数,过点
作两条互相垂直的直线,分别交椭圆于点
,分别交圆
于点
,记三角形
和三角
的面积分别为
.求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com