科目: 来源: 题型:
【题目】
是指大气中直径小于或等于
微米的颗粒物,也称为可入肺颗粒物.虽然
只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.我国
标准如下表所示.我市环保局从市区四个监测点2018年全年每天的
监测数据中随机抽取
天的数据作为样本,监测值如茎叶图如图所示.
![]()
(Ⅰ)求这
天数据的平均值;
(Ⅱ)从这
天的数据中任取
天的数据,记表示其中空气质量达到一级的天数
,求
的分布列和数学期望;
(Ⅲ)以
天的
日均值来估计一年的空气质量情况,则一年(按
天计算)中大约有多少天的空气质量达到一级.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
在
上,以R为切点的D的切线的斜率为
,过
外一点A(不在x轴上)作
的切线![]()
,点BC为切点,作平行于
的切线
(切点为D),点MN分别是与![]()
的交点(如图).
![]()
(1)用BC的纵坐标st表示直线
的斜率;
(2)设三角形
面积为S,若将由过
外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如
,再由MN作“切线三角形”,并依这样的方法不断作切线三角形…,试利用“切线三角形”的面积和计算由抛物线及
所围成的阴影部分的面积T.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是数列
的前
项和,对任意
,都有
;
(1)若
,求证:数列
是等差数列,并求此时数列
的通项公式;
(2)若
,求证:数列
是等比数列,并求此时数列
的通项公式;
(3)设
,若
,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
、
为椭圆
(
)和双曲线
的公共顶点,
、
分为双曲线和椭圆上不同于
、
的动点,且满足
,设直线
、
、
、
的斜率分别为
、
、
、
.
(1)求证:点
、
、
三点共线;
(2)求
的值;
(3)若
、
分别为椭圆和双曲线的右焦点,且
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,
且
,
且
,函数
.
(1)设
,
,若
是奇函数,求
的值;
(2)设
,
,判断函数
在
上的单调性并加以证明;
(3)设
,
,
,函数
的图象是否关于某垂直于
轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,空间直角坐标系中,四棱锥
的底面是边长为
的正方形,且底面在
平面内,点
在
轴正半轴上,
平面
,侧棱
与底面所成角为45°;
![]()
(1)若
是顶点在原点,且过
、
两点的抛物线上的动点,试给出
与
满足的关系式;
(2)若
是棱
上的一个定点,它到平面
的距离为
(
),写出
、
两点之间的距离
,并求
的最小值;
(3)是否存在一个实数
(
),使得当
取得最小值时,异面直线
与
互相垂直?请说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
为常数,
且
),且数列
是首项为
,公差为
的等差数列.
(1)求证:数列
是等比数列;
(2)若
,当
时,求数列
的前
项和
的最小值;
(3)若
,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列
,每年发放电动型汽车牌照数为构成数列
,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
|
|
|
| |
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com