科目: 来源: 题型:
【题目】若无穷数列满足:是正实数,当时,,则称是“—数列”.
(1)若是“—数列”且,写出的所有可能值;
(2)设是“—数列”,证明:是等差数列当且仅当单调递减;是等比数列当且仅当单调递增;
(3)若是“—数列”且是周期数列(即存在正整数,使得对任意正整数,都有),求集合的元素个数的所有可能值的个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率为,过的左焦点做轴的垂线交椭圆于、两点,且.
(1)求椭圆的标准方程及长轴长;
(2)椭圆的短轴的上下端点分别为,,点,满足,且,若直线,分别与椭圆交于,两点,且面积是面积的5倍,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】平行四边形所在的平面与直角梯形所在的平面垂直,,,且,,,为的中点.
(1)求证:平面;
(2)求证:;
(3)若直线上存在点,使得,所成角的余弦值为,求与平面所成角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?
(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;
(3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).
查看答案和解析>>
科目: 来源: 题型:
【题目】在高山滑雪运动的曲道赛项目中,运动员从高处(起点)向下滑,在滑行中运动员要穿过多个高约0.75米,宽4至6米的旗门,规定:运动员不经过任何一个旗门,都会被判一次“失格”,滑行时间会被增加,而所用时间越少,则排名越高.已知在参加比赛的运动员中,有五位运动员在滑行过程中都有三次“失格”,其中
(1)甲在滑行过程中依次没有经过,,三个旗门;
(2)乙在滑行过程中依次没有经过,,三个旗门;
(3)丙在滑行过程中依次没有经过,,三个旗门;
(4)丁在滑行过程中依次没有经过,,三个旗门;
(5)戊在滑行过程中依次没有经过,,三个旗门.
根据以上信息,,,,,,,,这8个旗门从上至下的排列顺序共有( )种可能.
A.6B.7C.8D.12
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知动直线交圆于坐标原点和点,交直线于点;
(1)若,求点、点的坐标;
(2)设动点满足,其轨迹为曲线,求曲线的方程;
(3)请指出曲线的对称性、顶点和图形范围,并说明理由;
(4)判断曲线是否存在渐近线,若存在,请直接写出渐近线方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,是两条不同直线,,是两个不同平面,给出下列四个命题:
①若,垂直于同一平面,则与平行;
②若,平行于同一平面,则与平行;
③若,不平行,则在内不存在与平行的直线;
④若,不平行,则与不可能垂直于同一平面
其中真命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com