科目: 来源: 题型:
【题目】如图,已知三棱柱
中,
底面
,
,
,
,
.
,
分别为棱
,
的中点.
![]()
(1)求异面直线
与
所成角的大小;
(2)若
为线段
的中点,试在图中作出过
、
、
三点的平面截该棱柱所得的多边形,并求出以该多边形为底,
为顶点的棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,倾斜角为
的直线
的参数方程为
(
为参数).在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)若直线
与曲线
交于
,
两点,且
,求直线
的倾斜角.
查看答案和解析>>
科目: 来源: 题型:
【题目】从抛物线
上任意一点P向x轴作垂线段,垂足为Q,点M是线段
上的一点,且满足![]()
(1)求点M的轨迹C的方程;
(2)设直线
与轨迹c交于
两点,T为C上异于
的任意一点,直线
,
分别与直线
交于
两点,以
为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市房管局为了了解该市市民
年
月至
年
月期间买二手房情况,首先随机抽样其中
名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图
所示的频率分布直方图,接着调查了该市
年
月至
年
月期间当月在售二手房均价
(单位:万元/平方米),制成了如图
所示的散点图(图中月份代码
分别对应
年
月至
年
月).
![]()
(1)试估计该市市民的购房面积的中位数
;
(2)现采用分层抽样的方法从购房面积位于
的
位市民中随机抽取
人,再从这
人中随机抽取
人,求这
人的购房面积恰好有一人在
的概率;
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值如下表所示:
|
| |
| 0.000591 | 0.000164 |
| 0.006050 | |
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出
年
月份的二手房购房均价(精确到
)
(参考数据)
,
,
,
,
,
,![]()
(参考公式)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率
,且圆
过椭圆
的上,下顶点.
(1)求椭圆
的方程.
(2)若直线
的斜率为
,且直线
交椭圆
于
、
两点,点
关于点的对称点为
,点
是椭圆
上一点,判断直线
与
的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.
查看答案和解析>>
科目: 来源: 题型:
【题目】某气象站统计了4月份甲、乙两地的天气温度(单位
),统计数据的茎叶图如图所示,
![]()
(1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;
(2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于
,则被称为“甲、乙两地往来温度适宜天气”,求“甲、乙两地往来温度适宜天气”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】
某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素
;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素
.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素
.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com