科目: 来源: 题型:
【题目】“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:
),经统计,树苗的高度均在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于
的为优质树苗.
![]()
(1)求图中
的值;
(2)已知所抽取的这120株树苗来自于
,
两个试验区,部分数据如下列联表:
|
| 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与
,
两个试验区有关系,并说明理由;
(3)通过用分层抽样方法从
试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.
附:参考公式与参考数据:![]()
其中![]()
| 0.010 | 0.005 | 0.001 |
| 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知变量
、
之间的线性回归方程为
,且变量
、
之间的一-组相关数据如下表所示,则下列说法错误的是( )
|
|
|
|
|
|
|
|
|
|
A.可以预测,当
时,
B.![]()
C.变量
、
之间呈负相关关系D.该回归直线必过点![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,
,
,且
满足
.记点
的轨迹为曲线
.
(1)求
的方程,并说明是什么曲线;
(2)若
,
是曲线
上的动点,且直线
过点
,问在
轴上是否存在定点
,使得
?若存在,请求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】 已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:
),经统计,树苗的高度均在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于
的为优质树苗.
![]()
(1)求图中
的值;
(2)已知所抽取的这120株树苗来自于
,
两个试验区,部分数据如列联表:
|
| 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与
,
两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4株,其中优质树苗的株数为
,求
的分布列和数学期望
.
附:参考公式与参考数据:
,其中![]()
| 0.010 | 0.005 | 0.001 |
| 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知变量
、
之间的线性回归方程为
,且变量
、
之间的一-组相关数据如下表所示,则下列说法错误的是( )
|
|
|
|
|
|
|
|
|
|
A.可以预测,当
时,
B.![]()
C.变量![]()
之间呈负相关关系D.该回归直线必过点![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的方程为:
,过点
的直线
的参数方程为
(
为参数).
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)若直线
与曲线
交于
、
两点,求
的值,并求定点
到
两点的距离之积.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
的右焦点为
,且短轴长为
,离心率为
.
![]()
(1)求椭圆
的标准方程;
(2)设点
为椭圆
与
轴正半轴的交点,是否存在直线
,使得
交椭圆
于
两点,且
恰是
的垂心?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com