科目: 来源: 题型:
【题目】某市为了解本市1万名小学生的普通话水平,在全市范围内进行了普通话测试,测试后对每个小学生的普通话测试成绩进行统计,发现总体(这1万名小学生普通话测试成绩)服从正态分布.
(1)从这1万名小学生中任意抽取1名小学生,求这名小学生的普通话测试成绩在内的概率;
(2)现在从总体中随机抽取12名小学生的普通话测试成绩,对应的数据如下:50,52,56,62,63,68,65,64,72,80,67,90.从这12个数据中随机选取4个,记表示大于总体平均分的个数,求的方差.
参考数据:若,则,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为( )
A.20.5B.21元C.21.5元D.22元
查看答案和解析>>
科目: 来源: 题型:
【题目】对于数列{an},若从第二项起的每一项均大于该项之前的所有项的和,则称{an}为P数列.
(1)若{an}的前n项和Sn=3n+2,试判断{an}是否是P数列,并说明理由;
(2)设数列a1,a2,a3,…,a10是首项为﹣1、公差为d的等差数列,若该数列是P数列,求d的取值范围;
(3)设无穷数列{an}是首项为a、公比为q的等比数列,有穷数列{bn},{cn}是从{an}中取出部分项按原来的顺序所组成的不同数列,其所有项和分别为T1,T2,求{an}是P数列时a与q所满足的条件,并证明命题“若a>0且T1=T2,则{an}不是P数列”.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C的中心在坐标原点焦点在x轴上,椭圆C上一点A(2,﹣1)到两焦点距离之和为8.若点B是椭圆C的上顶点,点P,Q是椭圆C上异于点B的任意两点.
(1)求椭圆C的方程;
(2)若BP⊥BQ,且满足32的点D在y轴上,求直线BP的方程;
(3)若直线BP与BQ的斜率乘积为常数λ(λ<0),试判断直线PQ是否经过定点.若经过定点,请求出定点坐标;若不经过定点,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某研究所开发了一种新药,测得成人注射该药后血药浓度y(微克/毫升)与给药时间x(小时)之间的若干组数据,并由此得出y与x之间的一个拟合函数y=40(0.6x﹣0.62x)(x∈[0,12]),其简图如图所示.试根据此拟合函数解决下列问题:
(1)求药峰浓度与药峰时间(精确到0.01小时),并指出血药浓度随时间的变化趋势;
(2)求血药浓度的半衰期(血药浓度从药峰浓度降到其一半所需要的时间)(精确到0.01小时).
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且acosC=(2b﹣c)cosA.
(1)若3,求△ABC的面积;
(2)若∠B<∠C,求2cos2B+cos2C的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在三棱锥P﹣ABC中,已知PA,PB,PC两两垂直,PB=3,PC=4,且三棱锥P﹣ABC的体积为10.
(1)求点A到直线BC的距离;
(2)若D是棱BC的中点,求异面直线PB,AD所成角的大小(结果用反三角函数值表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com