科目: 来源: 题型:
【题目】某中学为调查高三学生英语听力水平的情况,随机抽取了高三年级的80名学生进行测试,根据测试结果绘制了英语听力成绩(满分为30分)的频率分布直方图,将成绩不低于27分的定为优秀
(1)根据已知条件完成下面的
列联表,并据此资料判断是否有90%的把握认为英语听力成绩是否优秀与性别有关?
英语听力优秀 | 非英语听力优秀 | 合计 | |
男同学 | 10 | ||
女同学 | 36 | ||
合计 |
(2)将上述调查所得到的频率视为概率,现在从该校高三学生中,采取随机抽样方法每次抽取1名学生,共抽取3次,记被抽取的3名学生中“英语听力优秀”的人数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望E(X)
![]()
参考公式:
,其中![]()
参考临界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ex﹣a(x2+x+1).
(1)当a=1时,证明:f(x)+x2≥0;
(2)当a
时,判断函数f(x)的单调性;
(3)若函数f(x)有三个零点,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆M:(x+m)2+y2=4n2(m,n>0且m≠n),点N(m,0),P是圆M上的动点,线段PN的垂直平分线交直线PM于点Q,点Q的轨迹为曲线C.
(1)讨论曲线C的形状,并求其方程;
(2)若m=1,且△QMN面积的最大值为
.直线l过点N且不垂直于坐标轴,l与曲线C交于A,B,点B关于x轴的对称点为D.求证:直线AD过定点,并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥AB,PA=1,PC=3,BC=2,sin∠PCA
,E,F,G分别为线段的PC,PB,AB中点,且BE
.
![]()
(1)求证:AB⊥BC;
(2)若M为线段BC上一点,求三棱锥M﹣EFG的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,已知直线l1的参数方程为
(t为参数),直线l2的参数方程为
(t为参数),其中α∈(0,
),以原点O为点x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ﹣2sinθ=0.
(1)写出直线l1的极坐标方程和曲线C的直角坐标方程;
(2)设直线l1,l2分别与曲线C交于点A,B(非坐标原点)求|AB|的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的长轴长是短轴长的2倍,A,B分别为椭圆的左顶点和下顶点,且
的面积为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上位于第一象限内一动点,直线
与
轴交于点C,直线
与
轴交于点D,求证:四边形
的面积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求
的值;
(2) 若商品的成品为3元/千克, 试确定销售价格
的值,使商场每日销售该商品所获得的利润最大
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,曲线
的参数方程为
(t为参数)。以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)若
,
交于A,B两点,P点极坐标为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com