相关习题
 0  266108  266116  266122  266126  266132  266134  266138  266144  266146  266152  266158  266162  266164  266168  266174  266176  266182  266186  266188  266192  266194  266198  266200  266202  266203  266204  266206  266207  266208  266210  266212  266216  266218  266222  266224  266228  266234  266236  266242  266246  266248  266252  266258  266264  266266  266272  266276  266278  266284  266288  266294  266302  266669 

科目: 来源: 题型:

【题目】设函数

(I)讨论的单调性;

II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校高三年级有1000人,某次考试不同成绩段的人数,且所有得分都是整数.

(1)求全班平均成绩;

(2)计算得分超过141的人数;(精确到整数)

(3)甲同学每次考试进入年级前100名的概率是,若本学期有4次考试, 表示进入前100名的次数,写出的分布列,并求期望与方差.

参考数据: .

查看答案和解析>>

科目: 来源: 题型:

【题目】故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、 “赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若存在正数a,使得时,,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】对某校高三年级100名学生的视力情况进行统计(如果两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在的概率为.

1)求ab的值;

2)若报考高校A专业的资格为:任何一眼裸眼视力不低于5.0,已知在中有的学生裸眼视力不低于5.0.现用分层抽样的方法从中抽取4名同学,设这4人中有资格(仅考虑视力)考A专业的人数为随机变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PABDE分别是ACBC上的点,且平面PAB.

1)求证平面PDE

2)若D为线段AC中点,求直线PC与平面PDE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是椭圆的右焦点,过点的直线交椭圆于两点. 的中点,直线与直线交于点.

(Ⅰ)求征:

(Ⅱ)求四边形面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2是圆心极坐标为(3π),半径为1的圆.

1)求曲线C1的参数方程和C2的直角坐标方程;

2)设MN分别为曲线C1C2上的动点,求|MN|的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,点A0,﹣3),点M满足|MA|2|MO|.

1)求点M的轨迹方程;

2)若圆C:(xc2+yc+121,判断圆C上是否存在符合题意的M

3)设Px1y1),Qx2y2)是点M轨迹上的两个动点,点P关于点(01)的对称点为P1,点P关于直线y1的对称点为P2,如果直线QP1QP2y轴分别交于(0a)和(0b),问(a1b1)是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(题文)

等边△ABC的边长为3,点DE分别为ABAC上的点,且满足(如图①),将△ADE沿DE折起到△A1DE的位置,使二面角A1DEB成直二面角,连接A1BA1C(如图②).

1)求证:A1D⊥平面BCED

2)在线段BC上是否存在点P(不包括端点),使直线PA1与平面A1BD所成的角为60°?若存在,求出A1P的长,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案