【题目】如图,在三棱锥P-ABC中,
,
,
平面PAB,D,E分别是AC,BC上的点,且
平面PAB.
![]()
(1)求证
平面PDE;
(2)若D为线段AC中点,求直线PC与平面PDE所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,△DAB≌△DCB,E为线段BD上的点,且EA=EB=ED=AB,延长CE交AD于点F.
![]()
(1)若G为PD的中点,求证平面PAD⊥平面CGF;
(2)若AD=AP=6,求平面BCP与平面DCP所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,底面
是直角梯形,
,
,且
.点
是线段
上一点,且
.
![]()
(1)求证:平面
平面
.
(2)若
,在线段
上是否存在一点
,使得
到平面
的距离为
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是由
个有序实数构成的一个数组,记作:
.其中
称为数组
的“元”,
称为
的下标,如果数组
中的每个“元”都是来自数组
中不同下标的“元”,则称
为
的子数组.定义两个数组
,
的关系数为
.
(1)若
,
,设
是
的含有两个“元”的子数组,求
的最大值;
(2)若
,
,且
,
为
的含有三个“元”的子数组,求
的最大值;
(3)若数组
中的“元”满足
,设数组
含有四个“元”
,且
,求
与
的所有含有三个“元”的子数组的关系数
(
)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣4x2+5x﹣4.
(1)求曲线f(x)在点(2,f(2))处的切线方程:
(2)若g(x)=f(x)+k,求g(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
倾斜角的余弦值为
,圆
与以线段
为直径的圆关于直线
对称.
![]()
(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com