【题目】在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
倾斜角的余弦值为
,圆
与以线段
为直径的圆关于直线
对称.
![]()
(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.
【答案】(1)
(2)直线
与圆
相切,理由见解析 (3)![]()
【解析】
(1)根据直线
的倾斜角的余弦值为
,求出a,b的等量关系即可求解离心率;
(2)通过计算可得直线
与以
为直径的圆相切,所以直线
与圆
相切;
(3)根据面积求出半径,依次列方程组求解参数的值.
解:(1)设椭圆E的焦距为2c(c>0),
因为直线
的倾斜角的余弦值为
,所以
,
于是
,即
,所以椭圆E的离心率
(2)由
可设
,
,则
,
于是
的方程为:
,
故
的中点
到
的距离![]()
,
又以
为直径的圆的半径
,即有
,所以直线
与以
为直径的圆相切.
因为圆
与以线段
为直径的圆关于直线
对称,
所以直线
与圆
相切.
(3)由圆
的面积为
知,圆半径为2,从而
,
设
的中点
关于直线
:
的对称点为
,
则
解得
.
所以,圆
的方程为
.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,
,
,
平面PAB,D,E分别是AC,BC上的点,且
平面PAB.
![]()
(1)求证
平面PDE;
(2)若D为线段AC中点,求直线PC与平面PDE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求证:
![]()
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,角A,B,C所对的边分别为a,b,c,若(2b﹣c)cosA=acosC.
(1)求角A;
(2)若△ABC的外接圆面积为π,求△ABC的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过
的包裹收费
元;重量超过
的包裹,除
收费
元之外,超过
的部分,每超出
(不足
,按
计算)需再收
元.该公司将最近承揽的
件包裹的重量统计如下:
包裹重量(单位: |
|
|
|
|
|
包裹件数 |
|
|
|
|
|
公司对近
天,每天揽件数量统计如下表:
包裹件数范围 |
|
|
|
|
|
包裹件数 (近似处理) |
|
|
|
|
|
天数 |
|
|
|
|
|
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来
天内恰有
天揽件数在
之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员
人,每人每天揽件不超过
件,工资
元.公司正在考虑是否将前台工作人员裁减
人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,讨论F(x)=f(x)﹣g(x)的单调区间;
(2)已知函数f(x)的曲线与函数g(x)的曲线有两个交点,设两个交点的横坐标分别为x1,x2,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型企业生产的某批产品细分为
个等级,为了了解这批产品的等级分布情况,从仓库存放的
件产品中随机抽取
件进行检测、分类和统计,并依据以下规则对产品进行打分:
级或
级产品打
分;
级或
级产品打
分;
级、
级、
级或
级产品打
分;其余产品打
分.现在有如下检测统计表:
等级 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频数 | 10 | 90 | 100 | 200 | 200 | 100 | 100 | 100 | 70 | 30 |
规定:打分不低于
分的为优良级.
(1)①试估计该企业库存的
件产品为优良级的概率;
②请估计该企业库存的
件产品的平均得分.
(2)从该企业库存的
件产品中随机抽取
件,请估计这
件产品的打分之和为
分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
在
上的最大值;
(2)令
,若
在区间
上为单调递增函数,求
的取值范围;
(3)当
时,函数
的图象与
轴交于两点
,且
,又
是
的导函数.若正常数
满足条件
.证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com