相关习题
 0  266141  266149  266155  266159  266165  266167  266171  266177  266179  266185  266191  266195  266197  266201  266207  266209  266215  266219  266221  266225  266227  266231  266233  266235  266236  266237  266239  266240  266241  266243  266245  266249  266251  266255  266257  266261  266267  266269  266275  266279  266281  266285  266291  266297  266299  266305  266309  266311  266317  266321  266327  266335  266669 

科目: 来源: 题型:

【题目】数列满足:

(1)若数列是等差数列,求证:数列是等差数列;

(2)若数列都是等差数列,求证:数列从第二项起为等差数列;

(3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若上恒成立,求实数的取值范围;

(3)在(2)的条件下(提示:可以用第(2)问的结论),任意的,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于 两点.若直线斜率为 时, .

(1)求椭圆的标准方程;

(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C:)的左顶点为A,离心率为,点在椭圆C.

1)求椭圆C的方程;

2)若直线)与椭圆C交于EF两点,直线分别与y轴交于点MN,求证:x轴上存在点P,使得无论非零实数k怎样变化,以为直径的圆都必过点P,并求出点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

1)试估计该河流在8月份水位的众数;

2)我们知道若该河流8月份的水位小于40米的频率为f,该河流8月份的水位小于40米的情况下发生1级灾害的频率为g,则该河流8月份的水位小于40且发生1级灾害的频率为,其他情况类似.据此,试分别估计该河流在8月份发生12级灾害及不发生灾害的频率

3)该河流域某企业,在8月份,若没受12级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.现此企业有如下三种应对方案:

方案

防控等级

费用(单位:万元)

方案一

无措施

0

方案二

防控1级灾害

40

方案三

防控2级灾害

100

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中, 相交于点,点在线段上,,且平面

(1)求实数的值;

(2)若, 求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省新高考将实行模式,“3”为全国统考科目语文数学外语,所有学生必考;“1”为首选科目,考生须在物理历史两科中选择一科;“2”为再选科目,考生可在化学生物思想政治地理4个科目中选择两科.某考生已经确定首选科目为物理,如果他从再选科目中随机选择两科,则思想政治被选中的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若函数在区间上单调递减,试探究函数在区间上的单调性;

2)证明:方程上有且仅有两解.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

(Ⅱ)若按分层抽样的方法从年龄在以内及以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点为,且,求证:.

查看答案和解析>>

同步练习册答案