科目: 来源: 题型:
【题目】已知矩形纸片
中,
,将矩形纸片的右下角沿线段
折叠,使矩形的顶点B落在矩形的边
上,记该点为E,且折痕
的两端点M,N分别在边
上.设
,
的面积为S.
![]()
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)求l的最小值及此时
的值;
(3)问当θ为何值时,
的面积S取得最小值?并求出这个最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设
为偶函数,且当
时,
;当
时,
.关于函数
的零点,有下列三个命题:
①当
时,存在实数m,使函数
恰有5个不同的零点;
②若
,函数
的零点不超过4个,则
;
③对
,
,函数
恰有4个不同的零点,且这4个零点可以组成等差数列.
其中,正确命题的序号是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
是棱
上的一点,满足
平面
.
![]()
(Ⅰ)证明:
;
(Ⅱ)设
,
,若
为棱
上一点,使得直线
与平面
所成角的大小为30°,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:
![]()
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程
近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50。用样本平均数
作为
的近似值,用样本标准差
作为
的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量服从正态分布
,则
,
,
.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从
到
)若掷出反面遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为P试证明
是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)若
,求直线
以及曲线
的直角坐标方程;
(2)若直线
与曲线
交于
两点,且
,求直线
的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,
分别为双曲线
的左、右焦点,以
为直径的圆与双曲线在第一象限和第三象限的交点分别为
,
,设四边形
的周长为
,面积为
,且满足
,则该双曲线的离心率为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com