科目: 来源: 题型:
【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手
,再从全校征集出3位志愿者分别与
进行一场技术对抗赛,根据以往经验,
与这三位志愿者进行比赛一场获胜的概率分别为
,且各场输赢互不影响.
(1)求甲恰好获胜两场的概率;
(2)求甲获胜场数的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
,其中
.
(1)若
满足
.
①当
,且
时,求
的值;
②若存在互不相等的正整数
,满足
,且
成等差数列,求
的值.
(2)设数列
的前
项和为
,数列
的前n项和为
,
,
,若
,
,且
恒成立,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某小区内有两条互相垂直的道路
与
,平面直角坐标系
的第一象限有一块空地
,其边界
是函数
的图象,前一段曲线
是函数
图象的一部分,后一段
是一条线段.测得
到
的距离为8米,到
的距离为16米,
长为20米.
(1)求函数
的解析式;
(2)现要在此地建一个社区活动中心,平面图为梯形
(其中
,
为两底边),问:梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某人某天的工作是驾车从
地出发,到
两地办事,最后返回
地,
,三地之间各路段行驶时间及拥堵概率如下表
路段 | 正常行驶所用时间(小时) | 上午拥堵概率 | 下午拥堵概率 |
| 1 | 0.3 | 0.6 |
| 2 | 0.2 | 0.7 |
| 3 | 0.3 | 0.9 |
若在某路段遇到拥堵,则在该路段行驶时间需要延长1小时.
现有如下两个方案:
方案甲:上午从
地出发到
地办事然后到达
地,下午从
地办事后返回
地;
方案乙:上午从
地出发到
地办事,下午从
地出发到达
地,办完事后返回
地.
(1)若此人早上8点从
地出发,在各地办事及午餐的累积时间为2小时,且采用方案甲,求他当日18点或18点之前能返回
地的概率.
(2)甲乙两个方案中,哪个方案有利于办完事后更早返回
地?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
点
是椭圆上任意一点,且
的最大值为4,椭圆
的离心率与双曲线
的离心率互为倒数.
(1)求椭圆方程;
(2)设点
,过点
作直线
与圆
相切且分别交椭圆于
,求直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com