9£®Èçͼ£¬¾ØÐε¥Ôѵ¼Ïß¿òabcdµÄÖÊÁ¿Îªm£¬µç×èΪR£¬Æäab±ß³¤L1¡¢bc±ß³¤L2£¬¿ªÊ¼Ê±Ïß¿ò¾²Ö¹ÓÚÊúÖ±Æ½ÃæÄÚÇÒab±ßˮƽ£¬Ïß¿òÏ·½Ò»¶¨¾àÀë´¦µÄÒ»¾ØÐÎÇøÓòÄÚ´æÔÚ·½Ïò´¹Ö±ÓÚÏß¿òÆ½Ãæ¡¢´Å¸ÐӦǿ¶È´óСΪBµÄÔÈÇ¿´Å³¡ÉÏ¡¢Ï±߽ç¾ùÓëÏß¿òab±ßƽÐУ¨´Å³¡ÇøÓòÄڵĸ߶ȴóÓÚL2£©£¬ÏÖ½«Ïß¿òÓɾ²Ö¹ÆðÊÍ·Å£¬ÉèÏß¿òÏÂÂä¹ý³ÌÖÐab±ßÓë´Å³¡±ß½çʼÖÕÆ½ÐÐÇÒ·½Ïòˮƽ£¬ÒÑÖªab±ß¸Õ½øÈë´Å³¡ºÍ¸Õ´©³ö´Å³¡Ê±£¬Ïß¿ò¶¼×÷¼õËÙÖ±ÏßÔ˶¯£¬¼ÓËÙ¶È´óС¾ùΪ$\frac{g}{4}$£¬¶øcd±ß³ö´Å³¡Ç°Ë²¼ä£¬Ïß¿ò¼ÓËÙ¶ÈÇ¡ºÃΪÁ㣬²»¼Æ¿ÕÆø×èÁ¦£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®Çó£º
£¨1£©ÔÚÏß¿ò½øÈë´Å³¡¹ý³ÌÖУ¬Í¨¹ýÏß¿òµ¼Ïßijһ½ØÃæµÄµçÁ¿q£»
£¨2£©ÔÚcd±ß¸Õ½øÈë´Å³¡Ê±£¬Ïß¿òËÙ¶È´óСv£»
£¨3£©Ïß¿ò´©Ô½´Å³¡ÇøÓò¹ý³ÌÖУ¬Ïß¿òËù²úÉúµÄÈÈÁ¿Q£»
£¨4£©´Å³¡ÇøÓòµÄ¸ß¶ÈH£»
£¨5£©Ïß¿ò´Ó¿ªÊ¼ÏÂÂäµ½À뿪´Å³¡¹ý³ÌËù¾­ÀúµÄʱ¼ät£®

·ÖÎö £¨1£©¸ù¾Ý·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨Âɺ͵çÁ÷µÄ¶¨ÒåʽÇó½âµçÁ¿q£®
£¨2£©¸ù¾ÝÏß¿ò½øÈëºÍ´©³ö´Å³¡¹ý³ÌµÄÏàËÆÐÔÖªµÀ£¬cd±ß½ø´Å³¡Ë²¼ä¼ÓËÙ¶ÈΪÁ㣬Óɰ²ÅàÁ¦ÓëËٶȵĹØÏµ¼°Æ½ºâÌõ¼þÇóÏß¿òµÄËÙ¶È´óСv£®
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺͰ²ÅàÁ¦ÓëËٶȵĹØÏµÊ½£¬Çó³öÏß¿ò¸Õ½øÈë´Å³¡Ê±µÄËÙ¶È£¬ÔÙÓÉÄÜÁ¿Êغ㶨ÂÉÇóÈÈÁ¿Q£®
£¨4£©Ïß¿òÍêÈ«Ôڴų¡ÖÐÔ˶¯Ê±²»²úÉú¸ÐÓ¦µçÁ÷£¬²»Êܰ²ÅàÁ¦£¬×ñÊØ»úеÄÜÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÇóH£®
£¨5£©Ñо¿Ïß¿ò½øÈë´Å³¡µÄ¹ý³Ì£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺͼÓËٶȵ͍Òåʽ£¬ÔËÓûý·Ö·¨Çóʱ¼ä£®ÓÉÔȱäËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆÊ±¼ä¹«Ê½Çó³öÏß¿ò´Ócd±ß¸Õ´Å³¡µ½ab±ß¸Õ³ö´Å³¡µÄʱ¼ä£®´Ó¶ø¿ÉÇóµÃ×Üʱ¼ä£®

½â´ð ½â£º£¨1£©ÔÚÏß¿ò½øÈë´Å³¡¹ý³ÌÖУ¬Í¨¹ýÏß¿òµ¼Ïßijһ½ØÃæµÄµçÁ¿ q=$\overline{I}t$=$\frac{\overline{E}}{R}t$=$\frac{B{L}_{1}\overline{v}t}{R}$=$\frac{B{L}_{1}{L}_{2}}{R}$
£¨2£©¸ù¾ÝÏß¿ò½øÈëºÍ´©³ö´Å³¡¹ý³ÌµÄÏàËÆÐÔÖªµÀ£¬cd±ß½ø´Å³¡Ë²¼ä¼ÓËÙ¶ÈΪÁ㣬ÔòÓÐ
  mg=F°²£»
ÓÖ°²ÅàÁ¦ F°²=BIL1=B$\frac{B{L}_{1}v}{R}$L1=$\frac{{B}^{2}{L}_{1}^{2}v}{R}$
ÁªÁ¢½âµÃ v=$\frac{mgR}{{B}^{2}{L}_{1}^{2}}$
£¨3£©ÉèÏß¿ò¸Õ½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv0£®
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº$\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$-mg=ma=m$•\frac{g}{4}$
½âµÃ v0=$\frac{5mgR}{4{B}^{2}{L}_{1}^{2}}$
Ïß¿ò´©Ô½´Å³¡ÇøÓò¹ý³ÌÖУ¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂɵÃ
  Q=2¡Á[£¨$\frac{1}{2}m{v}_{0}^{2}-\frac{1}{2}m{v}^{2}$£©+mgL1]=$\frac{9{m}^{3}{g}^{2}{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2mgL1
£¨4£©¶ÔÓÚÏß¿òÍêÈ«Ôڴų¡ÖÐÔ˶¯µÄ¹ý³Ì£¬ÓÉÔ˶¯Ñ§¹«Ê½ÓÐ
    v02-v2=2g£¨H-2L2£©
½âµÃ H=$\frac{9{m}^{2}g{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2L2£®
£¨5£©Ïß¿ò×ÔÓÉÏÂÂäµÄʱ¼ä t1=$\frac{{v}_{0}}{g}$=$\frac{5mR}{4{B}^{2}{L}_{1}^{2}}$
Ñо¿Ïß¿ò½øÈë´Å³¡µÄ¹ý³Ì£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
  $\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$-mg=ma=m$\frac{¡÷v}{¡÷t}$
¼´ $\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$¡÷t-mg¡÷t=m¡÷v
Á½±ßÇóºÍµÃ£º$\sum_{\;}^{\;}$£¨$\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$¡÷t£©-$\sum_{\;}^{\;}$£¨mg¡÷t£©=$\sum_{\;}^{\;}$m¡÷v
¿ÉµÃ $\frac{{B}^{2}{L}_{1}^{2}}{R}$•L2-mgt2=m£¨v0-v£©
½âµÃÏß¿ò½øÈë´Å³¡µÄʱ¼ä t2=$\frac{{B}^{2}{L}_{1}^{2}{L}_{2}}{mgR}$-$\frac{mR}{{B}^{2}{L}_{1}^{2}}$
Ïß¿ò´Ócd±ß¸Õ´Å³¡µ½ab±ß¸Õ³ö´Å³¡µÄʱ¼äÉèΪt3£®
Ôò t3=$\frac{{v}_{0}-v}{g}$=$\frac{mR}{4{B}^{2}{L}_{1}^{2}}$
¹ÊÏß¿ò´Ó¿ªÊ¼ÏÂÂäµ½À뿪´Å³¡¹ý³ÌËù¾­ÀúµÄʱ¼ä t=t1+2t2+t3=$\frac{2{B}^{2}{L}_{1}^{2}{L}_{2}}{mgR}$-$\frac{mR}{2{B}^{2}{L}_{1}^{2}}$£®
´ð£º
£¨1£©ÔÚÏß¿ò½øÈë´Å³¡¹ý³ÌÖУ¬Í¨¹ýÏß¿òµ¼Ïßijһ½ØÃæµÄµçÁ¿qÊÇ$\frac{B{L}_{1}{L}_{2}}{R}$£»
£¨2£©ÔÚcd±ß¸Õ½øÈë´Å³¡Ê±£¬Ïß¿òËÙ¶È´óСvÊÇ$\frac{mgR}{{B}^{2}{L}_{1}^{2}}$£»
£¨3£©Ïß¿ò´©Ô½´Å³¡ÇøÓò¹ý³ÌÖУ¬Ïß¿òËù²úÉúµÄÈÈÁ¿QÊÇ$\frac{9{m}^{3}{g}^{2}{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2mgL1£»
£¨4£©´Å³¡ÇøÓòµÄ¸ß¶ÈHÊÇ$\frac{9{m}^{2}g{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2L2£»
£¨5£©Ïß¿ò´Ó¿ªÊ¼ÏÂÂäµ½À뿪´Å³¡¹ý³ÌËù¾­ÀúµÄʱ¼ätÊÇ$\frac{2{B}^{2}{L}_{1}^{2}{L}_{2}}{mgR}$-$\frac{mR}{2{B}^{2}{L}_{1}^{2}}$£®

µãÆÀ ±¾ÌâÒª·ÖÎöÇå³þÏß¿òµÄÔ˶¯¹ý³Ì£¬ÊìÁ·ÍƵ¼³öµçÁ¿ºÍ°²ÅàÁ¦µÄ±í´ïʽ£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɺͼÓËٶȵ͍ÒåʽÇóÏß¿ò½øÈë´Å³¡µÄʱ¼äÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®´Å³¡ÓÐÇ¿Èõ£¬´Å¼«¸½½üµÄ´Å³¡×Ü±ÈÆäËûλÖõĴų¡Ç¿£®´Å³¡Ç¿Èõ´¦´¦ÏàͬµÄ´Å³¡½Ð×öÔÈÇ¿´Å³¡£¬´Å³¡Ç¿¶ÈµÄµ¥Î»ÊÇÌØË¹À­£¬¼ò³ÆÌØ£®·ûºÅT£®Í¨µçµ¼ÌåÔڴų¡ÖÐÊܵ½Á¦µÄ×÷Óã¬Õâ¸öÁ¦½Ð×ö°²ÅàÁ¦£¬°²ÅàÁ¦µÄ´óС²»½öÓë´Å³¡Ç¿¶È´óСÓйأ¬»¹ÓëµçÁ÷´óСÓйأ®ÊµÑé±íÃ÷ÔÚÔÈÇ¿´Å³¡ÖУ¬µ±Í¨µçµ¼ÌåÓë´Å³¡·½Ïò´¹Ö±Ê±£¬µçÁ÷ËùÊܵݲÅàÁ¦FµÈÓڴų¡Ç¿¶ÈB¡¢µçÁ÷IºÍµ¼Ïß³¤¶ÈLÈýÕߵij˻ý£¬¼´F=BIL£®
£¨1£©Ôڴų¡Ç¿¶ÈΪ0.5TµÄÔÈÇ¿´Å³¡ÖУ¬ÓÐÒ»ÌõÓë´Å³¡·½Ïò´¹Ö±µÄͨµçµ¼Ïߣ¬Í¨¹ýËüµÄµçÁ÷Ϊ5A£¬µ¼ÏßÉϳ¤Îª40cmµÄÒ»¶ÎËùÊܵݲÅàÁ¦F=1N£®½«´Ëµ¼ÏߴӴų¡ÖÐÄÃ×ߣ¬´Å³¡Ç¿¶È²»±ä£®
£¨2£©µ¼ÏßÊܵ½°²ÅàÁ¦µÄ·½ÏòÓëµçÁ÷·½ÏòºÍ´Å³¡·½ÏòÓйأ®½øÒ»²½µÄʵÑé¿ÉÒÔÖ¤Ã÷£¬Í¨µçÖ±µ¼ÏßËùÊܰ²ÅàÁ¦µÄ·½Ïò£¬¸ú´Å³¡·½ÏòÖ®¼äµÄ¹ØÏµ¿ÉÒÔÓÃ×óÊÖ¶¨ÔòÀ´ÅжϣºÉ쿪×óÊÖ£¬Ê¹Ä´Ö¸ÓëËÄÖ¸ÔÚÒ»¸öÆ½ÃæÄÚ²¢¸úËÄÖ¸´¹Ö±£¬ÈôŸÐÏß´¹Ö±´©ÈëÊÖÐÄ£¬Ê¹ËÄÖ¸Ö¸ÏòµçÁ÷µÄ·½Ïò£¬ÕâʱĴָËùÖ¸µÄ·½Ïò¾ÍÊǵ¼ÏßËùÊܰ²ÅàÁ¦µÄ·½Ïò£¬ÈçͼËùʾ£®µ±Ö»½«µçÁ÷µÄ·½Ïò·´Ïò£¬Ôò°²ÅàÁ¦µÄ·½Ïò¸Ä±ä£¬½«µçÁ÷µÄ·½ÏòÓë´Å³¡·½Ïòͬʱ·´Ïò£¬°²ÅàÁ¦µÄ·½Ïò²»±ä£®£¨Ñ¡Ìî¡°¸Ä±ä¡±»ò¡°²»±ä¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

20£®ÈçͼËùʾ£¬Ò»ÖʵãÔÚxÖáÉÏÒÔOΪƽºâλÖÃ×ö¼òгÔ˶¯£¬ÆäÕñ·ùΪ8cm£¬ÖÜÆÚΪ4s£®t=0ʱÎïÌåÔÚx=4cm´¦£¬ÏòxÖḺ·½ÏòÔ˶¯£¬Ôò£¨¡¡¡¡£©
A£®ÖʵãÔÚt=1£®OsʱËù´¦µÄλÖÃΪx=+4$\sqrt{3}$cm
B£®ÖʵãÔÚt=1£®OsʱËù´¦µÄλÖÃΪx=-4$\sqrt{3}$cm
C£®ÓÉÆðʼλÖÃÔ˶¯µ½x=-4cm´¦ËùÐèµÄ×î¶Ìʱ¼äΪ$\frac{2}{3}$s
D£®ÓÉÆðʼλÁDÔ˶¯µ½x=-4cm´¦ËùÐèµÄ×î¶Ìʱ¼äΪ$\frac{1}{6}$s

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³Í¬Ñ§ÎªÁ˲ⶨ»¬¿éÓëľ°åµÄ¶¯Ä¦²ÁÒòÊý£¬Éè¼ÆÊµÑé×°ÖÃÈçͼ¼×£»³¤Ö±Æ½°åÒ»¶Ë·ÅÔÚˮƽ×ÀÃæÉÏ£¬ÁíÒ»¶Ë¼ÜÔÚÒ»Îï¿éÉÏ£»ÔÚÆ½°åÉϱê³öA¡¢BÁ½µã£¬Bµã·Å´¦ÖÃÒ»¹âµçÃÅ£¬Óùâµç¼ÆÊ±Æ÷¼Ç¼»¬¿éÉϵĵ²¹âÌõͨ¹ý¹âµçÃÅʱµ²¹âʱ¼ä£®

ʵÑé²½ÖèÈçÏ£º
¢ÙÓÃÓα꿨³ß²âÁ¿µ²¹âÌõµÄ¿í¶Èd£»
¢ÚÓÃÖ±³ß²âÁ¿ABÖ®¼äµÄ¾àÀës£¬Aµãµ½Ë®Æ½×ÀÃæµÄ´¹Ö±¾àÀëh1£¬Bµãµ½Ë®Æ½×ÀÃæµÄ´¹Ö±¾àÀëh2£»
¢Û½«»¬¿é´ÓAµãÓɾ²Ö¹ÊÍ·Å£¬Óɹâµç¼ÆÊ±Æ÷¶Á³ö»¬¿éµÄµ²¹âʱ¼ät£»ÒÀ¾Ý²âÁ¿Êý¾Ý¿É¼ÆËã³ö¶¯Ä¦²ÁÒòÊý¦Ì£»
¢Ü¸Ä±äÐ±ÃæµÄÇã½Ç£¬Öظ´Ê±¼ä²½Öè¢Ú¢Û£¬µÃµ½¶à¸ö¦ÌÖµ£¬Çó³öƽ¾ùÖµ£¬Ð´ÈëʵÑ鱨¸æ£®
£¨1£©²âÁ¿µ²¹âÌõ¿í¶ÈʱµÄÓα꿨³ß¶ÈÊýÈçͼÒÒËùʾ£¬¶ÁµÃd=36.2mm£®
£¨2£©¶ÔÓ¦ÓÚÌâÖТڢ۲½µÄ²âÁ¿£¬Íê³ÉÏÂÁи÷ʽ£®£¨ÒÑÖªÖØÁ¦¼ÓËÙ¶ÈΪg£©
¢ÙÐ±ÃæÇã½ÇµÄÓàÏÒcos¦È=$\frac{\sqrt{{s}^{2}-{£¨{h}_{1}-{h}_{2}£©}^{2}}}{s}$£»
¢Ú»¬¿éÔ˶¯Ê±µÄ¼ÓËÙ¶Èa=$\frac{{d}^{2}}{2s{t}^{2}}$£»
¢Û»¬¿éÓëÐ±ÃæµÄ¶¯Ä¦²ÁÒòÊý¦Ì=$\frac{{2g£¨{h_1}-{h_2}£©{t^2}-{d^2}}}{{2g{t^2}\sqrt{{s^2}-{{£¨{h_1}-{h_2}£©}^2}}}}$£¨ÓÃÐ±ÃæÇã½Ç¦ÈÓë¼ÓËÙ¶Èa±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª1¸öÍ­Ô­×ÓµÄÖÊÁ¿Îªa£¬Í­µÄĦ¶ûÖÊÁ¿Îªb£¬ÃܶÈΪ¦Ñ£¬Ôò1¸öÍ­Ô­×ÓËùÕ¼µÄÌå»ýÊÇ$\frac{a}{¦Ñ}$£¬°¢·ü¼ÓµÂÂÞ³£ÊýÊÇ$\frac{b}{a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

14£®ÈçͼaËùʾ£¬Ò»ÇáÖʵ¯»ÉµÄ϶˹̶¨ÔÚË®Æ½ÃæÉÏ£¬É϶˷ÅÖÃÒ»ÎïÌ壨ÎïÌåÓ뵯»É²»Á¬½Ó£©£¬³õʼʱÎïÌå´¦ÓÚ¾²Ö¹×´Ì¬£®ÏÖÓÃÊúÖ±ÏòÉϵÄÀ­Á¦F×÷ÓÃÔÚÎïÌåÉÏ£¬Ê¹ÎïÌ忪ʼÏòÉÏ×öÔȼÓËÙÔ˶¯£¬À­Á¦FÓëÎïÌåÎ»ÒÆxÖ®¼äµÄ¹ØÏµÈçͼbËùʾ£¨g=10m/s2£©£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÎïÌåµÄÖÊÁ¿Îª3kgB£®ÎïÌåµÄ¼ÓËÙ¶È´óСΪ5m/s2
C£®µ¯»ÉµÄ¾¢¶ÈϵÊýΪ7.5N/cmD£®ÎïÌåÓ뵯»É·ÖÀëʱ¶¯ÄÜΪ0.4J

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³Ì½¾¿Ñ§Ï°Ð¡×éµÄͬѧÓûÑéÖ¤¡°¶¯Äܶ¨Àí¡±£¬ËûÃÇÔÚʵÑéÊÒ×é×°ÁËÒ»Ì×ÈçͼËùʾµÄ×°Öã®ÈôÄãÊÇС×éÖеÄһλ³ÉÔ±£¬ÒªÍê³É¸ÃÏîʵÑ飬Ôò£º
£¨1£©ÊµÑéʱÊ×ÏÈÒª×öµÄ²½ÖèÊÇÆ½ºâĦ²ÁÁ¦£®
£¨2£©ÊµÑéʱΪÁ˱£Ö¤»¬¿éÊܵ½µÄºÏÁ¦ÓëɳºÍɳͰµÄ×ÜÖØÁ¦´óС»ù±¾ÏàµÈ£¬É³ºÍɳͰµÄ×ÜÖÊÁ¿Ó¦Âú×ãµÄʵÑéÌõ¼þÊÇɳºÍɳͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£®
£¨3£©ÔÚÉÏÊöµÄ»ù´¡ÉÏ£¬Ä³Í¬Ñ§ÓÃÌìÆ½³ÆÁ¿»¬¿éµÄÖÊÁ¿M£®ÍùɳͰÖÐ×°ÈëÊÊÁ¿µÄϸɳ£¬ÓÃÌìÆ½³Æ³ö´ËʱɳºÍɳͰµÄ×ÜÖÊÁ¿m£®ÈÃɳͰ´ø¶¯»¬¿é¼ÓËÙÔ˶¯£¬Óôòµã¼ÆÊ±Æ÷¼Ç¼ÆäÔ˶¯Çé¿ö£¬ÔÚ´òµã¼ÆÊ±Æ÷´ò³öµÄÖ½´øÉÏÈ¡Á½µã£¬²â³öÕâÁ½µãµÄ¼ä¾àLºÍÕâÁ½µãµÄËÙ¶È´óСv1Óëv2£¨v1£¼v2£©£®Ôò±¾ÊµÑé×îÖÕÒªÑéÖ¤µÄÊýѧ±í´ïʽΪmgL=$\frac{1}{2}M{{v}_{2}}^{2}-\frac{1}{2}M{{v}_{1}}^{2}$£¨ÓÃÌâÖеÄ×Öĸ±íʾʵÑéÖвâÁ¿µÃµ½µÄÎïÀíÁ¿£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Í¼¼×ÊÇÒ»¸öµ¥°ÚÕñ¶¯µÄÇéÐΣ¬Í¼ÒÒÊÇÕâ¸öµ¥°ÚµÄÕñ¶¯Í¼Ïó£®Èôµ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪg=¦Ð2 m/s2£¬ÔòÕâ¸ö°ÚµÄ°Ú³¤Îª0.16Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ò»ÖÖ¡°Éµ¹Ï¡±Ïà»úµÄÆØ¹âʱ¼äÊǹ̶¨²»±äµÄ£®ÎªÁ˹À²âÏà»úµÄÆØ¹âʱ¼ä£¬ÓÐλͬѧÌá³öÁËÏÂÊöʵÑé·½°¸£ºËû´ÓÇ½ÃæÇ°Ä³µã£¬Ê¹Ò»¸öСʯ×Ó×ÔÓÉÂäÏ£¬¶ÔСʯ×ÓÕÕÏ࣬µÃµ½ÈçͼµÄÕÕÆ¬£¬ÓÉÓÚСʯ×ÓµÄÔ˶¯£¬ËüÔÚÕÕÆ¬ÉÏÁôÏÂÒ»ÌõÄ£ºýµÄ¾¶¼£AB£¬ÒÑ֪ÿ¿éשµÄƽ¾ùºñ¶ÈԼΪ6cm£¬ÇÒÏÂÂäÆðµãµ½Aµã¾àÀëÊúÖ±¾àÀëÔ¼1.8m£¬´ÓÕâЩÐÅÏ¢¹ÀËã¸ÃÏà»úµÄÆØ¹âʱ¼ä×î½Ó½üÓÚ£¨¡¡¡¡£©
A£®0.2sB£®0.6sC£®0.02sD£®0.008s

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸