网址:http://1010pic.com/paper/timu/5153103.html[举报]
21、设f(x)=ax2+bx+c,若f(1)=,问是否存在a、b、c∈R,使得不等式:
x2+≤f(x)≤2x2+2x+对一切实数x都成立,证明你的结论.
解:由f(1)=得a+b+c=,令x2+=2x2+2x+x=-1,由f(x)≤2x2+2x+推得
f(-1)≤.由f(x)≥x2+推得f(-1)≥,∴f(-1)=,∴a-b+c=,
故2(a+c)=5,a+c=且b=1,∴f(x)=ax2+x+(-a).依题意:ax2+x+(-a)≥x2+
对一切x∈R成立,∴a≠1且Δ=1-4(a-1)(2-a)≤0,得(2a-3)2≤0,
∴f(x)=x2+x+1易验证:x2+x+1≤2x2+2x+对x∈R都成立.
∴存在实数a=,b=1,c=1,使得不等式:x2+≤f(x)≤2x2+2x+对一切x∈R都成立.