精英家教网 > 试题搜索列表 >(I )求a 分之b

(I )求a 分之b答案解析

科目:gzsx 来源: 题型:

设函数C:f(x)=2ax-
b
x
+lnx,若f(x)在x=1,x=-
1
2
处取得极值,
(i )求a,b的值;
(ii)在[
1
4
,2]存在x0,使得不等式f(x0)-c≤0,求c的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知z=1+i,a,b∈R,若
z2+az+bz2-z+1
=1-i
,求a,b的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•天津一模)已知函数f(x)=ax3+bx2在点(2,f(2))处的切线方程为6x+3y-10=0,且对任意的x∈[0,+∞)f'(x)≤kln(x+1)恒成立.
(I)求a,b的值;
(Ⅱ)求实数k的最小值;
(Ⅲ)证明:
n
i=1
1
i
<ln(n+1)+2(n∈N)

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=2asinωxcosωx+b(2cos2ωx-1)(ω>0)在x=
π
12
时取最大值2.x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,|x1-x2|的最小值为
π
2

(I)求a、b的值;
(II)若f(α)=
2
3
,求sin(
6
-4α)
的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•辽宁)设f(x)=ln(x+1)+
x+1
+ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=
3
2
x在(0,0)点相切.
(I)求a,b的值;
(II)证明:当0<x<2时,f(x)<
9x
x+6

查看答案和解析>>

科目:gzsx 来源: 题型:

为了迎接2010年10月1日国庆节,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
方案 A B C D
经费 300万元 400万元 500万元 600万元
安全系数 0.6 0.7 0.8 0.9
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全
(I)求A、B两种方案合用,能保证安全的概率;
(II)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•湖北)设函数f(x)=axn(1-x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.
(I)求a,b的值;
(II)求函数f(x)的最大值
(III)证明:f(x)<
1ne

查看答案和解析>>

科目:gzsx 来源: 题型:

某生产线生产的产品等级为随机变量X,其分布列:
X 1 2 3
P 0.5 a b
设E(X)=1.7.
(I)求a、b的值;
(II)已知出售一件1级,2级,3级该产品的利润依次为306元,100元,0元.在该产品生产线上随机抽取两件产品并出售,设出售两件产品的利润之和为Y,求Y的分布列和E(Y).

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行.
(I)求a、b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2008•临沂二模)设x=4是函数f(x)=(x2+ax+b)e4-x(x∈R)的一个极值点;
(I)求a与b的关系式(用a表示b),并求f(x)的单调区间;
(Ⅱ)设a>0,g(x)=(a2+
334
)2x
,若存在ξ1,ξ2∈[0,5]使得|f(ξ1)-g(ξ2)|<4成立,求a的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

设函数f(x)=2ax-
b
x
+lnx

(Ⅰ)若f(x)在x=1,x=
1
2
处取得极值,
    (i)求a、b的值;
    (ii)在[
1
4
,2]
存在x0,使得不等式f(x0)-c≤0成立,求c最小值
(Ⅱ)当b=a时,若f(x)在(0,+∞)上是单调函数,求a的取值范围.(参考数据e2≈7.389,e3≈20.08)

查看答案和解析>>

科目:gzsx 来源: 题型:

设函数f(x)=x2+ax+b(a、b为实常数),已知不等式|f(x)|≤|2x2+4x-6|对任意的实数x均成立.定义数列{an}和{bn}:a1=3,2an=f(an-1)+3(n=2,3,…),bn=
1
2+an
(n=1,2,…)
,数列{bn}的前n项和Sn
(I)求a、b的值;
(II)求证:Sn
1
3
(n∈N*)

(III )求证:an22n-1-1(n∈N*).

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•莱芜二模)若人们具有较强的节约意识,到饭店就餐时吃光盘子里的东西或打包带走,称为“光盘族”,否则称为“非光盘族”某班几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查得到如下统计表:
组数 分组 頻数 频率 光盘族占本组的比例
第一组 [25,30﹚ 50 0.05 30%
第二组 [30,35﹚ 100 0.1 30%
第三组 [35,40﹚ 150 0.15 40%
第四组 [40,45﹚ 200 0.2 50%
第五组 [45,50﹚ a b 65%
第六组 [50,55﹚ 200 0.2 60%
(I)求a、b的值并估计本社区[25,55]岁的人群中“光盘族”人数所占的比例;
(Ⅱ)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2011•自贡三模)设函数,f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点是x=3.
(I)求a与b的关系式(用a表示b,并求f(x)的单调区间;
(11)设a>0,g(x)=(a2+
254
)ex若存在ε1,ε2∈[0,4]使得f(ε1)-g(ε2)<1成立,求a的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为
6

(I)求a,b;
(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.

查看答案和解析>>

科目:gzsx 来源: 题型:

设函数f(x)=
x
3
 
-3a
x
2
 
+3bx
的图象与直线12x+y-1=0相切于点(1,-11).
(I)求a,b的值;
(II)如果函数g(x)=f(x)+c有三个不同零点,求c的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知f(x)=
2x+b2x+1+a
是R上奇函数.
(I)求a,b的值;
(II)解不等式f(-3x2-2x)+f(2x2+3)<0.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知f(x)=
2x+b2x+1+a
是R上奇函数
(I)求a,b的值;
(II)解不等式f[-3(log3x)2-2log3x]+f[2(log3x)2+3]<0

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•蚌埠二模)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx,若曲线y=f(x)与曲线y=g(x)在它们的交点(1,e)处公共切线.
(I)求a,b的值;
(II)记h(x)=f(x)+g(x),判断函数h(x)的单调性.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知z=1+i,a,b为实数.
(1)若ω=z2+3
.
z
-4,求|ω|;
(2)若
z2+az+b
z2-z+1
=1-i
,求a,b的值.

查看答案和解析>>