精英家教网 > 试题搜索列表 >是否存在定点M,使得以PQ为直径的圆恒过点M

是否存在定点M,使得以PQ为直径的圆恒过点M答案解析

科目:gzsx 来源:《圆锥曲线》2012-2013学年广东省十三大市高三(上)期末数学试卷汇编(理科)(解析版) 题型:解答题

如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

查看答案和解析>>

科目:gzsx 来源:2013年广东省湛江市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

查看答案和解析>>

科目:gzsx 来源:2013年广东省高考数学押题预测试卷(理科)(解析版) 题型:解答题

如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•湛江一模)如图,已知点M0(x0,y0)是椭圆C:
y2
2
+x2
=1上的动点,以M0为切点的切线l0与直线y=2相交于点P.
(1)过点M0且l0与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM0为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆
y2
a2
+
x2
b2
=1(a>b>0)
,则以Q为切点的椭圆的切线方程是:
y1y
a2
+
x1x
b2
=1(a>b>0)

查看答案和解析>>

科目:gzsx 来源: 题型:

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为
2
2
,又椭圆上任一点到两焦点的距离和为2
2
,过点M(0,-
1
3
)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:2013年湖北新洲、红安、麻城一中高三上学期期末考文科数学试卷(解析版) 题型:解答题

 (本小题满分14分)

已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.

(1)求椭圆的方程;

(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

 

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为数学公式,又椭圆上任一点到两焦点的距离和为数学公式,过点M(0,数学公式)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:2012-2013学年湖北省新洲一中、红安一中、麻城一中高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为
2
2
,又椭圆上任一点到两焦点的距离和为2
2
,过点M(0,-
1
3
)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•福建)如图,椭圆E:
x2
a2
+
y2
b2
 =1(a>b>0)
的左焦点为F1,右焦点为F2,离心率e=
1
2
.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知动圆P(圆心为点P)过定点A(1,0),且与直线x=-1相切,记动点P的轨迹为C.
(1)求轨迹C的方程;
(2)设过点P的直线l与曲线C相切,且与直线x=-1相交于点Q.试研究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•崇明县一模)如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:2014届北京市西城区高二上学期期末考试文科数学试卷(解析版) 题型:解答题

(本小题满分14分)

已知动圆P(圆心为点P)过定点A(1,0),且与直线相切。记动点P的轨迹为C。

(Ⅰ)求轨迹C的方程;

(Ⅱ)设过点P的直线l与曲线C相切,且与直线相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。

 

查看答案和解析>>

科目:gzsx 来源:2012年全国普通高等学校招生统一考试理科数学(福建卷解析版) 题型:解答题

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率。过F1的直线交椭圆于A、B两点,且△ABF2的周长为8

(Ⅰ)求椭圆E的方程。

(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q。试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由

【解析】

 

查看答案和解析>>

科目:gzsx 来源:2012-2013学年北京市西城区(北区)高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知动圆P(圆心为点P)过定点A(1,0),且与直线x=-1相切,记动点P的轨迹为C.
(1)求轨迹C的方程;
(2)设过点P的直线l与曲线C相切,且与直线x=-1相交于点Q.试研究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:2012年福建省高考数学试卷(理科)(解析版) 题型:解答题

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

已知动圆P(圆心为点P)过定点A(1,0),且与直线x=-1相切,记动点P的轨迹为C.
(1)求轨迹C的方程;
(2)设过点P的直线l与曲线C相切,且与直线x=-1相交于点Q.试研究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:2013年上海市崇明县高考数学一模试卷(文科)(解析版) 题型:解答题

如图,椭圆的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

如图,椭圆数学公式的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源:2012-2013学年福建省三明一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>