精英家教网 > 试题搜索列表 >f

f答案解析

科目:gzsx 来源: 题型:

已知△ABC的面积S满足
3
≤S≤3
3
,且
AB
BC
=6

(1)求角B的取值范围;
(2)求函数f(B)=
1-
2
cos(2B-
π
4
)
sinB
的值域.

查看答案和解析>>

科目:gzsx 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
  (x>0)
是否为闭函数?并说明理由;
(3)若y=k+
x+2
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=
sinx
+
cosx
,(0≤x≤
π
2
)
,则f(x)的值域为
 

查看答案和解析>>

科目:gzsx 来源: 题型:

a
=(cosx,1),
b
=(sinx,2)

(1)若
a
b
,求(sinx+cosx)2的值
(2)若f(x)=(
a
-
b
)•
a
,求f(x)在[0,π]上的递减区间.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=lg
kx-1x-1
.(k∈R且k>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且
AP
=
8
5
PQ

(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+
3
y+3=0相切,求椭圆C的方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

若函数f(x)=sin(3x+φ)的图象关于直线x=
3
对称,则φ的最小正值等于(  )
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=(
1
2x-1
+
1
2
)•x

(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:f(x)>0.

查看答案和解析>>

科目:gzsx 来源: 题型:

f(x)=asin(x+
π
4
)+3sin(x-
π
4
)
是偶函数,则a=
 

查看答案和解析>>

科目:gzsx 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
x2
b2
+
y2
a2
=1
,(a>b>0)上的两点,已知向量
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
),且
m
n
=0
,若椭圆的离心率e=
3
2
,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

12、若f(x)是R上的奇函数,且f(2x-1)的周期为4,若f(6)=-2,则f(2008)+f(2010)=
2

查看答案和解析>>

科目:gzsx 来源: 题型:

下列命题中:
①函数f(x)=sinx+
2
sinx
(x∈(0,π))的最小值是2
2

②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形:
③如果正实数a,b,c满足a+b>c,则
a
1+a
+
b
1+b
c
1+c
;其中正确的命题是(  )
A、①②③B、①C、②③D、③

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=
-x2+2x,x>0
0,x=0
x2+mx,x<0
是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知f(x)是定义在R上的奇函数,x>0时,f(x)=x2-2x+3,则f(x)=
 

查看答案和解析>>

科目:gzsx 来源: 题型:

精英家教网如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
3
,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有PE⊥AF;
(3)当BE为何值时,PA与平面PDE所成角的大小为45°?

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知y=f(x)是定义在R上的奇函数,若x<0时,f(x)=1+2x,求f(x)并画出其图象.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=x3-ax2-bx+a2,x∈R,a,b为常数.
(1)若函数f(x)在x=1处有极值10,求实数a,b的值;
(2)若函数f(x)是奇函数,
①方程f(x)=2在x∈[-2,4]上恰有3个不相等的实数解,求实数b的取值范围;
②不等式f(x)+2b≥0对∀x∈[1,4]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=log2
1+x
1-x

(1)判断函数f(x)的奇偶性;
(2)求证f(x1)+f(x2)=f(
x1+x2
1+x1x2
)

(3)若f(
a+b
1+ab
)=1
f(-b)=
1
2
,求f(a)的值.

查看答案和解析>>