科目:czsx 来源: 题型:
科目:czsx 来源:2010年云南省玉溪市中考数学试题 题型:059
平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);
![]()
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系(本题6分)
![]()
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需说明理由)
(3)求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.(简述理由)
科目:czsx 来源: 题型:
科目:czsx 来源:2011-2012学年江苏省江阴华士片七年级下学期期中考试数学卷(带解析) 题型:解答题
平面内的两条直线有相交和平行两种位置关系(本题6分)![]()
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需说明理由)
(3)求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.(简述理由)
科目:czsx 来源:2011-2012学年江苏泰州永安初级中学七年级3月练习数学试题(带解析) 题型:解答题
平面内的两条直线有相交和平行两种位置关系.
(1)AB∥CD.如图a,由AB∥CD,有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD+∠D=∠B.![]()
如图b,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由; ![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点E,如图c,则∠BPD﹑∠B﹑∠D﹑∠BED之间有何数量关系?(不需说明理由);![]()
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.![]()
科目:czsx 来源:2011-2012学年江苏泰州永安初级中学七年级3月练习数学试题(解析版) 题型:解答题
平面内的两条直线有相交和平行两种位置关系.
(1)AB∥CD.如图a,由AB∥CD,有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD+∠D=∠B.
![]()
如图b,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点E,如图c,则∠BPD﹑∠B﹑∠D﹑∠BED之间有何数量关系?(不需说明理由);
![]()
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
![]()
科目:czsx 来源:2014届江苏省江阴华士片七年级下学期期中考试数学卷(解析版) 题型:解答题
平面内的两条直线有相交和平行两种位置关系(本题6分)
![]()
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需说明理由)
(3)求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.(简述理由)
科目:czsx 来源:期中题 题型:解答题
科目:czsx 来源:云南省中考真题 题型:操作题
科目:czsx 来源:四川省期末题 题型:解答题
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
(1)AB∥CD.如图a,由AB∥CD,有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD+∠D=∠B.
![]()
如图b,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点E,如图c,则∠BPD﹑∠B﹑∠D﹑∠BED之间有何数量关系?(不需说明理由);
![]()
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
![]()
科目:czsx 来源:不详 题型:解答题
科目:czsx 来源: 题型:
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
(1)AB平行于CD,如图①,点P在AB、CD外部时,由AB∥CD,有∠B=∠BOD,又∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图②,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图④中∠4+∠B+∠C+∠D+∠E+∠F的度数.
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
![]()
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
![]()
![]()
科目:czsx 来源: 题型:
平面内的两条直线有相交和平行两种位置关系.
![]()
(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)