精英家教网 > 试题搜索列表 >抛物线y1=ax2+bx+c的顶点为a

抛物线y1=ax2+bx+c的顶点为a答案解析

科目:czsx 来源: 题型:解答题

7.抛物线y1=ax2+bx+c的顶点为A(2,3),且经过点C(0,4).
(1)求a、b、c的值;
(2)求直线AC的解析式y2
(3)若y2>y1,求x的取值范围.

查看答案和解析>>

科目:czsx 来源:2016届浙江省杭州市九年级上学期第二次质检数学试卷(解析版) 题型:解答题

已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A

(1)分别求抛物线和直线的解析式;

(2)当x取何值时,函数值y2>y1;

(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?

查看答案和解析>>

科目:czsx 来源: 题型:解答题

2.已知抛物线y1=ax2+bx+c的顶点坐标为($\frac{3}{2},-\frac{1}{4}$)且经过点A(1,0),直线y2=x+m恰好也经过点A
(1)分别求抛物线和直线的解析式;
(2)当x取何值时,函数值y2>y1
(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y1=ax2+bx+c的顶点坐标为(2,1),且经过点B(
5
2
3
4
),抛物线对称轴左侧与x轴交于点A,与y轴相交于点C.
(1)求抛物线解析式y1和直线BC的解析式y2
(2)连接AB、AC,求△ABC的面积.
(3)根据图象直接写出y1<y2时自变量x的取值范围.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

如图,已知抛物线y1=ax2+bx+c的顶点坐标为(2,1),且经过点B(
5
2
3
4
),抛物线对称轴左侧与x轴交于点A,与y轴相交于点C.
(1)求抛物线解析式y1和直线BC的解析式y2
(2)连接AB、AC,求△ABC的面积.
(3)根据图象直接写出y1<y2时自变量x的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

11.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1).
(1)求抛物线的表达式;
(2)若-1≤x≤3,试求y的取值范围;
(3)若M(n2-4n+6,y1)和N(-n2+n+$\frac{7}{4}$,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,直线y1=-x-2交x轴于点A,交y轴于点B,抛物线y2=ax2+bx+c的顶点为A,且经精英家教网过点B.
(1)求该抛物线的解析式;
(2)求当y1≥y2时x的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图,直线y1=-x-2交x轴于点A,交y轴于点B,抛物线y2=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)求当y1≥y2时x的值.

查看答案和解析>>

科目:czsx 来源:2009-2010学年辽宁省大连市第55中学旅顺实验中学九年级(上)期中数学试卷(解析版) 题型:解答题

如图,直线y1=-x-2交x轴于点A,交y轴于点B,抛物线y2=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)求当y1≥y2时x的值.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件______时,y<-3;
   ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

15.已知一抛物线y=ax2+bx+c的顶点P为(-1,-4),且过A(1,0)点.
(1)求抛物线的解析式;
(2)若抛物线上有两点M(x1,y1)、N(x2,y2),且x1<x2<-6,写出y1、y2的大小关系;
(3)写出当ax2+bx+c<0时x的取值范围.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y1=2x2+
1
4
的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+
1
4
和直线y2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•西城区二模)在平面直角坐标系xOy中,抛物线y1=2x2+
1
4
的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+
1
4
和直线y2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
(Ⅰ)求y1与x之间的函数关系式;
(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
(1)求y2与x之间的函数关系式;
(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.
x-103
y1=ax2+bx+c0数学公式0

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.
(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当S△PAB≤6时,求点P的横坐标x的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(数学公式),求当x≥1时y1的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;

(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;

(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.

查看答案和解析>>

科目:czsx 来源:2013年初中毕业升学考试(贵州黔东南卷)数学(解析版) 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;

(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;

(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.

 

查看答案和解析>>

科目:czsx 来源:2013年天津市中考数学试卷 (解析版) 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
(Ⅰ)求y1与x之间的函数关系式;
(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
(1)求y2与x之间的函数关系式;
(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.
x-13
y1=ax2+bx+c

查看答案和解析>>