20.已知函数上都是增函数.在区间(0.4)上是减函数. (1)求a.b的值, (2)求曲线处的切线方程. 查看更多

 

题目列表(包括答案和解析)

已知函数都是定义在区间(0,+∞)上的增函数,并设函数,那么函数在区(0,+∞)上                                                (    )

    A.一定是增函数

    B.可能是增函数,也可能是减函数,两者必居其一

    C.可能是增函数,也可能是减函数,还可能是常数函数,三者必居其一

    D.以上(A)、(B)、(C)都不正确

查看答案和解析>>

15、已知函数f(x)的定义域为R,且对于任意x∈R,都有f(x)=f(-x)及f(x+4)=f(x)+f(2)成立.当x1、x2∈[0,2]且x1≠x2时,都有[f(x1)-f(x2)](x1-x2)>0成立.现给出下列四个结论:
①f(2)=0;②函数f(x)在区间[-6,-4]上为增函数;③直线x=-4是函数f(x)的一条对称轴;④方程f(x)=0在区间[-6,6]上有4个不同的实根.
其中正确命题的序号是
①③④
. (把你认为正确的命题序号都填上)

查看答案和解析>>

已知函数f(x)=ax2+lnx(x>0),g(x)=2x(x∈R),函数h(x)=f(x)-g(x)在区间(0,+∞)上为增函数.
(1)求实数a的取值范围;
(2)设f′(x)、h′(x)分别是f(x)、h(x)的导函数,若方程h′(x)=0在区间(0,+∞)上有唯一解,
①令函数mn(x)=[f′(x)]n-f(xn+
1
xn
),其中n∈N*且n≥2.2函数y=mn(x)在区间(0,+∞)上的最小值;
②求证:对任意的正实数x,都有
n
i=2
1
mi(x)
5
6

查看答案和解析>>

已知函数f(x)=ax3-x2+bx+2(a,b,c∈R)且(a≠0)在区间(-∞,0)上都是增函数,在区间(0,4)上是减函数.
(Ⅰ)求b的值;
(Ⅱ)求a取值范围.

查看答案和解析>>

已知函数f(x)=alnx+
12
x2+(a+1)x+1

(1)当a=-1时,求函数f(x)的单调增区间;
(2)若函数f(x)在(0,+∞)上是增函数,求实数a的取值范围;
(3)若a>0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>2|x1-x2|,求实数a的最小值.

查看答案和解析>>


同步练习册答案