20.设f (x)是定义在[-1.1]上的偶函数.g 的图像关于直线x=1对称.且当 x∈[2.3]时.g3.其中a为实常数. 的解析式, 在[0.1]上是增函数.求实数a的取值范围, (III)是否存在正整数a.使函数f (x)的图像的最高点落在直线y=12上?若存在.试求出a的值.否则.请说明理由. 查看更多

 

题目列表(包括答案和解析)

设f(x)是定义在[-1,1]上的偶函数,g(x)与f(x)的图象关于直线x-1=0对称,且当x∈[2,3]时,g(x)=2a·(x-2)-4(a为常数)

(Ⅰ)求函数f(x)的表达式;

(Ⅱ)设a∈(6+∞),试判断f(x)在[-1,1]上的单调性,并求使f(x)图象的最高点落在直线y=12上时相应的a值.

查看答案和解析>>

设f(x)是定义在[-1,1]上的偶函数,f(x)与g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3

(Ⅰ)求f(x)的表达式;

(Ⅱ)是否存在正实数a,使得f(x)的图象的最高点在直线y=12上?若存在,求出正实数a的值;若不存在,请说明理由.

查看答案和解析>>

设f(x)是定义在[-1,1]上的偶函数,f(x)与g(x)的图象关于x=1对称,且当x∈[2,3]时,(a为常数).

(1)求f(x)的解析式;

(2)若f(x)在[0,1]上是增函数,求实数a的取值范围;

(3)(理科作,文科不作).若a∈(-6,6),问能否使f(x)的最大值为4?请说明理由.

查看答案和解析>>

设f(x)是定义在[-1,1]上的偶函数,g(x)与f(x)的图象关于直线x=1对称,当x∈[2,3]时,g(x)=2t(x-2)-4(x-2)3(t为常数).

(1)求f(x)的表达式.

(2)当t∈时,求f(x)在[0,1]上取最大值时对应的x值;猜想f(x)在[0,1]上的单调增区间,给予证明.

(3)当t>6时,是否存在t使f(x)的图象的最高点落在直线y=12上?若存在,求t的值;若不存在说明理由.

查看答案和解析>>

设f(x)是定义在(-1,1)上的偶函数在(0,1)上增,若f(a-2)-f(4-a2)<0,则a的取值范围为________.

查看答案和解析>>


同步练习册答案