题目列表(包括答案和解析)
已知△ABC的内角满足
若
,
且
满足:
,
,
为
与
的夹角.
(Ⅰ)求;
(Ⅱ)求;
【解析】第一问利用二倍角公式化简∵∴
∴
∴
或
(舍去)又角B是△ABC的内角∴
第二问中∵,
,
为
与
的夹角
∴=
又
∴
,
∴
=
=
(Ⅰ) 解:∵∴
∴∴
或
(舍去)…………2分
又角B是△ABC的内角∴ ………………2分
(Ⅱ) 解:∵,
,
为
与
的夹角
∴=
………………2分
又∴
,
………………2分
∴=
=
如图,在三棱柱中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线与
的距离;
(Ⅱ)二面角的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,、
分别为Y,Z轴建立空间直角坐标系.由于,
在三棱柱中有
,
设
又侧面
,故
. 因此
是异面直线
的公垂线,则
,故异面直线
的距离为1.
(II)由已知有故二面角
的平面角
的大小为向量
与
的夹角.
如图所示的长方体中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴为面
的法向量.∵
,
,
∴为平面
的法向量.∴利用法向量的夹角公式,
,
∴与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点
、
,
∴,又点
,
,∴
∴,且
与
不共线,∴
.
又平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵,
∴,
,即
,
,
又,∴
平面
. ………8分
(Ⅲ)∵,
,∴
平面
,
∴为面
的法向量.∵
,
,
∴为平面
的法向量.∴
,
∴与
的夹角为
,即二面角
的大小为
在中,满足
,
是
边上的一点.
(Ⅰ)若,求向量
与向量
夹角的正弦值;
(Ⅱ)若,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量与向量
的夹角为
,则
令=
,得
,又
,则
为所求
第二问因为,
=m所以
,
(1)当时,则
=
(2)当时,则
=
第三问中,解:设,因为
,
;
所以即
于是
得
从而
运用三角函数求解。
(Ⅰ)解:设向量与向量
的夹角为
,则
令=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为,
=m所以
,
(1)当时,则
=
;-2分
(2)当时,则
=
;--2分
(Ⅲ)解:设,因为
,
;
所以即
于是
得
从而---2分
==
=…………………………………2分
令,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,
材料:采访零向量
W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?
零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.
W:好的,那就开始吧!你的名字有什么特殊的含义吗?
零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.
W:你与其他向量有什么共同之处呢?
零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.
W:你有哪些值得骄傲的特殊荣耀呢?
零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.
W:你有如此多的荣耀,那么是否还有烦恼之事呢?
零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.
W:OK!采访就到这里吧,非常感谢你的合作,再见!
零向量:Bye!
阅读上面的材料回答下面问题.
应用零向量时应注意哪些问题?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com