(1).若切点是Qn(an,ank).则切线方程是 当n=1时.切线过点P(1.0) 即.得,当n>1时.切线过点 即 得 所以数列是首项为,公比为的等比数列., (2) ------------ (3)设 则两式相减.得 . ------------ 查看更多

 

题目列表(包括答案和解析)

精英家教网已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.
(1)求切点A的纵坐标;
(2)若离心率为
3
2
的椭圆C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k2,k3,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

已知函数f(x)=
-x2+x,(x≤1)
lnx,(x>1)

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x2<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,
3
8
)是否是函数f(x)的“上线区间”(不必证明).

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的
3
倍,F1,F2是它的左,右焦点.
(1)若P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=4,求F1、F2的坐标;
(2)在(1)的条件下,过动点Q作以F2为圆心、以1为半径的圆的切线QM(M是切点),且使|QF_|=
2
|QM|
,求动点Q的轨迹方程.

查看答案和解析>>

已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
1
λ

(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.
①若M是圆E:(x-2)2+(y-4)2=64上任意一点,过M作曲线D的切线,切点是N,求|MN|的取值范围;
②已知F,G是曲线D上不同的两点,对于定点Q(-3,0),有|QF|•|QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

(2012•扬州模拟)已知A(2,1),⊙O:x2+y2=1,由直线l:x-y+3=0上一点P向⊙O引切线PQ,切点为Q,若PQ=PA,则P点坐标是
(0,3)
(0,3)

查看答案和解析>>


同步练习册答案