(Ⅱ)设,交轴于点. 查看更多

 

题目列表(包括答案和解析)

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的长半轴的长等于焦距,且x=4为它的右准线.
(I)求椭圆的方程;
(II)过定点M(m,0)(-2<m<2,m≠0为常数)作斜率为k(k≠0)的直线l与椭圆交于不同的两点A.B,问在x轴上是否存在一点N,使直线NA与NB的倾斜角互补?若存在,求出N点坐标,若不存在,请说明理由.

查看答案和解析>>

设双曲线C:
x2
a2
-y2=1
(a>0)与直线l:y+x=1相交于两不同点A,B,设直线l与y轴交点为P,且
PA
=
5
12
PB
,则a=
 

查看答案和解析>>

设圆M:x2+y2=8,将曲线上每一点的纵坐标压缩到原来的
12
,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交曲线C于A、B两个不同点.
(1)求曲线C的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

设圆M:x2+y2=8,将圆上每一点的横坐标不变,纵坐标压缩到原来的
12
,得到曲线C.点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交曲线C于A、B两个不同点.
(1)求曲线C的方程;
(2)求m的取值范围.

查看答案和解析>>

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,离心率为
2
2
,过点F且与x轴垂直的直线被椭圆截得的线段长为
2

(1)求椭圆方程.
(2)过点P(0,2)的直线l与椭圆交于不同的两点A,B,当△OAB面积最大时,求|AB|.

查看答案和解析>>


同步练习册答案