题目列表(包括答案和解析)
| y2 |
| a2 |
| x2 |
| b2 |
| a2 |
| |OM|2 |
| b2 |
| |ON|2 |
| 25 |
| 16 |
(本题16分,其中第(1)小题8分,第(2)小题8分)
已知椭圆
的方程为
,长轴是短轴的2倍,且椭圆
过点
;斜率为
的直线
过点
,
为直线
的一个法向量,坐标平面上的点
满足条件
.
(1)写出椭圆
方程,并求点
到直线
的距离;
(2)若椭圆
上恰好存在3个这样的点
,求
的值.
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
一、选择题
1、C 2、C 3、D 4、B 5、D 6、A
7、D 8、B 9、C 10、A 11、B 12、B
二、填空题
13、±4 14、0.18 15、251,4 16、①②
三、解答题
17、解:(Ⅰ)由
,得
即 
也即

∴
∴
∴
(Ⅱ)∵


∴
的最大值为
18、解:(Ⅰ)∵击中目标
次的概率为
∴他至少击中两次的概率
(Ⅱ)设转移前射击次数为
,
的可能取值为1,2,3,4,5
则
,
1,2,3,4 
∴
的分布列为

1
2
3
4
5






∴
19、解:(Ⅰ)∵
面
,∴
面
|