题目列表(包括答案和解析)
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
(本题满分18分,第1小题6分,第2小题6分,第3小题6分)
对于定义在D上的函数
,若同时满足
(Ⅰ)存在闭区间
,使得任取
,都有
是常数);
(Ⅱ)对于D内任意
,当
时总有
,则称
为“平底型”函数。
(1)判断
是否是“平底型”函数?简要说明理由;
(2)设
是(1)中的“平底型”函数,若
,对一切
恒成立,求实数
的范围;
(3)若
是“平底型”函数,求
和
满足的条件,并说明理由。
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数
、
、
满足
,则称
比
远离
.
(1)若
比1远离0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
远离
;
(3)已知函数
的定义域
.任取
,
等于
和
中远离0的那个值.写出函数
的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
[番茄花园1]22.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com