由三垂线定理.得. 查看更多

 

题目列表(包括答案和解析)

如图,在正三棱柱ABC-A1B1C1中,所有棱的长度都是1,M是BC边的中点,P是AA1边上的点,且PA=
6
4

(1)求:点P到棱BC的距离;
(2)问:在侧棱CC1上是否存在点N,使得异面直线AB1与MN所成角为45°?若存在,请说明点N的位置;若不存在,请说明理由;
(3)定义:如果平面α经过线段AA′的中点,并与线段AA′垂直,则称点A关于平面α的对称点为点A′.设点A关于平面PBC的对称点为A′,求:点A′到平面AMC1的距离.

查看答案和解析>>

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且

(Ⅰ)证明:无论取何值,总有

(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;

(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

 

查看答案和解析>>

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(Ⅰ)证明:无论取何值,总有
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(Ⅰ)证明:无论取何值,总有
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

如图,已知不垂直于x轴的动直线l交抛物线y2=2mx(m>0)于A、B两点,若A、B满足∠AQP=∠BQP,其中Q点坐标为(-4,0),原点O为PQ的中点.

(1)证明A、P、B三点共线.

(2)当m=2时,是否存在垂直于x轴的直线,使得被以AP为直径的圆所截得的弦长为定值?若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案